Collaborative provenance for workflow-driven science and engineering

Altıntaş, İ.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bibliography


Altintas, Ilkay, Adam Birnbaum, Kim K. Baldridge, Wibke Sudholt, Mark Miller, Celine Amoreira, Yohann Potier and Bertram Ludaescher (2004a). A framework for the design and reuse of grid workflows. In Scientific Applications of Grid Computing: First International Workshop; Lecture Notes in Computer Science (P. Herrera, M.S. Perez and


Altintas, Ilkay, Manish Kumar Anand, Trung Vuong, Shawn Bowers, Bertram Ludäscher and Peter M.A. Sloot (2010f). A data model for analyzing user collaborations in workflow-driven science. Submitted to the International Journal of Computers and Their Applications (IJCA), Special Issue on Scientific Workflows, Provenance and Their Applications.


Backstrom, Lars, Cynthia Dwork and Jon Kleinberg (2007). Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In WWW ’07:


Bowers, Shawn, Timothy McPhillips, Martin Wu Wu and Bertram Ludäscher (2007). Data


IEEE. pp. 291–298.

Elmroth, Erik, Francisco Hernández and Johan Tordsson (2010). Three fundamental dimen-
sions of scientific workflow interoperability: Model of computation, language, and execution

Fahringer, Thomas, Radu Prodan, Rubing Duan, Jürgen Hofer, Farrukh Nadeem, Francesco
Nerieri, Stefan Podlipnig, Jun Qin, Muntaz Siddiqui, Hong-Linh Truong, Alex Villazon
for scientific workflows. In Workflows for e-Science (Ian J. Taylor, Ewa Deelman, Den-

Foster, Ian, Carl Kesselman, Jeffrey Nick and Steven Tuecke (2002). The physiology of the
grid: An open grid services architecture for distributed systems integration. Technical re-
port. Globus Project.

Freeman, Linton C. (1977). A set of measures of centrality based on betweenness. Sociome-
try. 40(1), 35–41.

Freeman, Linton C. (1979). Centrality in social networks conceptual clarification. Social Net-
works. 1(3), 215–239.

Freire, Juliana, Cláudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E. Scheidegger
and Annotation of Data (Luc Moreau and Ian Foster, Eds.). Vol. 4145 of Lecture Notes in


Gadelha Jr., Luiz M.R., Ben Clifford, Marta Mattoso, Michael Wilde and Ian Foster (2010).

Gao, Yong, June Kinoshita, Elizabeth Wu, Eric Miller, Ryan Lee, Andy Seabone,
Steve Cayzer and Tim Clark (2006). SWAN: A distributed knowledge infrastructure for

Gil, Yolanda, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gann-
on, Carole Goble, Miron Livny, Luc Moreau and Jim Myers (2007). Examining the chal-

Gil, Yolanda, Varun Ratnakar and Ewa Deelman (2006). Metadata catalogs with semantic
representations. In Provenance and Annotation of Data (Luc Moreau and Ian Foster, Eds.).

Goble, Carole A., Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius Michailides,
David Newman, Mark Borkum, Sean Bechhofer, Marco Roos, Peter Li and David


Leymann, Frank (2001). Web Services Flow Language (WSFL 1.0), IBM. Technical report. IBM.


Wilde, Michael, Ian Foster, Kamil Iskra, Pete Beckman, Zhao Zhang, Allan Espinosa, Mihael


