Indole-based phosphorus ligands in asymmetric catalysis
Wassenaar, J.

Link to publication

Citation for published version (APA):
Wassenaar, J. (2010). Indole-based phosphorus ligands in asymmetric catalysis

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 5

Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: Kinetics and reaction mechanism†

Abstract: The reaction mechanism of the IndolPhos-Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated. Unlike C_2 symmetric diphosphine ligands, the catalysts generated from this C_1 symmetric hybrid phosphine-phosphoramidite ligand seem to follow a lock-and-key mechanism in which the major diastereomeric substrate-catalyst complex leads to the product.

5.1 Introduction

The amplification of chirality by means of asymmetric catalysis is an elegant and useful concept in the synthesis of complex structures, expressing biological activity relevant to pharmaceutical use. Homogeneous transition metal catalysis has emerged in the past four decades as one of the most efficient and powerful tools to transfer chirality from catalyst to product. Asymmetric hydrogenation (hereafter, AH) of olefins was found as one of the first catalytic asymmetric reactions, and is still one of the most important industrial processes in the production of chiral fine chemical building blocks. The first catalysts were derived from cationic rhodium and chiral mono- or bidentate phosphorus ligands, which play the pivotal role in obtaining high selectivities, introduced by Knowles and Kagan in the early 1970’s. Over the subsequent decades more than three thousand chiral phosphorus ligands have been developed, guided by an increasing understanding of the reaction mechanism.

In the seminal work by Halpern and Brown, it was proposed that the enantioselectivity in the AH of olefins, in particular N-acylated dehydroamino esters, is determined by the oxidative addition of dihydrogen to one of the diastereomeric catalyst-substrate complexes 1B (Figure 1, top). The less stable diastereomer is more

![Diagram](image-url)

Figure 5.1 Unsaturate/dihydride mechanism for the AH of N-acylated dehydroamino esters [P-P = (R,R)-DIPAMP, (R,R)-CHIRAPHOS, or (R)-BINAP; s = solvent] (top). Dihydride/unsaturate mechanism [P-P = (R,R)-t-Bu-BisP*] (bottom).
reactive and leads to the product. This so-called “unsaturate/dihydride” mechanism is shown to be operative for C₂-symmetric diphosphines such as BINAP, DIPAMP, and CHIRAPHOS. More recently, an alternative mechanism has been proposed by Gridnev and Imamoto for t-Bu-BisP*-Rh catalysts, which involves oxidative addition of H₂ to the solvate complex A prior to olefin coordination (“dihydride/unsaturate” mechanism; Figure 1, bottom). The enantioselectivity is determined in the migratory insertion of one of the hydrides into the double bond of the substrate. In this case, two possible diastereomeric substrate-RhH₂ complexes 2C may be formed. Conversely to the unsatuate/dihydride mechanism, the most stable diastereomer leads to the product. In terms of efficiency, the latter mechanism seems attractive as most of the catalyst is involved in the turnover of substrates to products, whereas in the unsaturate/dihydride mechanism only a small fraction of the catalyst participates in turnover. In addition to these two general mechanisms, highly functionalized ligands can give rise to alternative pathways.

Heteroditopic C₁-symmetric ligands enable desymmetrization of the coordination sphere by differences in trans-influence of the donor atoms. As a result, specific substrate coordination is feasible and the exclusion of one diastereomer (1B or 2C) can be achieved. Evans et al. demonstrated this concept using a P/S mixed ligand. The reaction follows in that case the unsaturate/dihydride catalytic cycle, however, the stereochemistry of the product suggests that the major diastereomer leads to the product (lock-and-key mechanism). Mechanistic studies by Reetz et al. also indicate a similar mechanism for monodentate phosphate ligands.

Hybrid phospine-phosphoramidite ligands, which also feature heteroditopicity and C₁-symmetry, have been successfully employed to generate highly active and selective catalysts for the AH of functionalized olefins. It has been suggested that these ligands too, enable specific substrate binding. However, up to now no detailed mechanistic studies have been reported substantiating this proposition and one may wonder whether the difference in trans-influence between phosphine and phosphoramidite allows for such effects. Our laboratory reported the synthesis of phospine-phosphoramidite IndolPhos (3) and its use as ligand in highly selective asymmetric hydrogenations (chapters 2-4), hydroformylations (chapters 2 and 6), and allylic alkylations (chapter 7). In this chapter, we investigate the mechanism of the IndolPhos-Rh catalyzed AH in order to answer the question which mechanism is operable, and if specific substrate binding (lock-and-key mechanism) is indeed achieved. The latter will be substantiated by X-ray crystal structure determination, kinetic studies, high-pressure NMR spectroscopy and DFT calculations.

5.2 Ligand synthesis

IndolPhos ligands 3a-f are synthesized according to the previously described procedures outlined in Scheme 5.1 (chapters 2-3). The 2-lithioindole, generated by in situ protection with CO₂ of the indole NH and subsequent lithiation with t-BuLi, is
reacted with the appropriate phosphine chloride. Condensation of the thus obtained indolylphosphines with (S)-bisnaphthol phosphorochloridites gives IndolPhos ligands in good to excellent yield.

Scheme 5.1 Synthesis of IndolPhos ligands 3a-f.

\[
\begin{align*}
1) & \text{n-BuLi} \\
2) & \text{CO}_2 \\
3) & \text{t-BuLi} \\
4) & \text{R}_2\text{PCI} \\
\text{R} = \text{Ph}, \text{Pr}, \text{Cy}, \text{oTol} \\
\end{align*}
\]

\[
\begin{align*}
\text{3a} & \text{ R} = \text{Ph}; \text{ R}' = \text{H} \\
\text{3b} & \text{ R} = \text{Pr}; \text{ R}' = \text{H} \\
\text{3c} & \text{ R} = \text{Cy}; \text{ R}' = \text{H} \\
\text{3d} & \text{ R} = \text{oTol}; \text{ R}' = \text{H} \\
\text{3e} & \text{ R} = \text{Ph}; \text{ R}' = \text{SiMe}_3 \\
\text{3f} & \text{ R} = \text{Pr}; \text{ R}' = \text{Me} \\
\end{align*}
\]

5.3 X-ray crystal structure

Ligand 3e was reacted with dichloro-1,5-cyclooctadiene rhodium dimer, and treated subsequently with silver tetrafluoroborate to obtain complex 4 of the formula [Rh(3e)(cod)]BF$_4$. Crystals suitable for single crystal X-ray diffraction were obtained as red cubes by slow diffusion of hexane into a dichloromethane solution. Top and side views of displacement ellipsoid plots of complex 4 are shown in Figure 5.2 and 5.3. Relevant bond distances and angles are listed in the caption of Figure 5.2. The absolute structure of 4 in the non-centrosymmetric space group P2$_1$2$_1$2$_1$ was reliably determined using the Flack parameter (see experimental section).

As expected, complex 4 exhibits a square planar geometry, placing the substituents on phosphorus above and below the coordination plane. The Rh(1)–P(1) distance is 0.07 Å shorter compared to the Rh(1)–P(2) bond, indicating significant π-backdonation in case of the phosphoramidite. The bite angle of 85° is small compared to most chiral bidentate phosphorus ligands. This may explain the high selectivity for the branched aldehyde in the rhodium-catalyzed hydroformylation of styrene, reported in chapters 2 and 6.

The side view presented in Figure 5.3 allows the construction of a quadrant model. On the right side, intermediate steric crowding is encountered from the substituents on the phosphine. The upper left quadrant exhibits most crowding due to the chiral bisnaphthol moiety. Consequently, the lower left quadrant is most accessible to the bulk solution. Furthermore, it is noteworthy that the aromatic six-membered ring of the indole backbone in part enforces the twisted conformation of the bisnaphthol and further rigidifies the structure. This element of ligand design may be vital in order to obtain the high selectivity’s reported in this chapter.
Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: Kinetics and reaction mechanism

Figure 5.2 Top view of displacement ellipsoid plot (50% probability level) of complex 4. Hydrogen atoms, solvent molecules and the tetrafluoroborate counter anion are omitted for clarity. Selected bond distances (Å) and angles (deg): Rh(1)–P(1), 2.2152(7); Rh(1)–P(2), 2.2828(7); P(1)–Rh(1)–P(2), 84.75(3).

Figure 5.3. (top) Side view of displacement ellipsoid plot (50% probability level) of complex 4. Hydrogen atoms, a solvent molecule, the tetrafluoroborate counter anion and the 1,5-cyclooctadiene ligand are omitted for clarity. (bottom) Quadrant diagram indicating the spatial distribution of the steric bulk. Darker regions represent a greater amount of steric crowding.
5.4 Scope of IndolPhos-Rh catalyzed hydrogenation

Table 5.1 summarizes the full substrate scope of the IndolPhos-Rh catalysts. High efficiencies are obtained for N-acyl-protected enamides (entries 1-5), which allow for the synthesis of protected α- and β- amino acids, and optically active arylamines.14d Also double bonds, which are not part of an enamide, are hydrogenated efficiently with high enantioselectivity (entries 6-9). In addition to dimethylitaconate, 2-hydroxymethylacrylates giving Roche ester derivatives, which serve as valuable building blocks in natural product synthesis, are hydrogenated in high yield and enantioselectivity.14b The functional group tolerance of the catalytic system is illustrated by the hydrogenation of α-methylcinnamic acid in good ee (entry 9). However, the conversion is lower and gas-uptake measurements suggest deactivation of the catalyst over time. Finally, enol- and enamido phosphonate esters are hydrogenated to the corresponding hydroxy- and amino phosphonates quantitatively in moderate to good ee.14d For most substrates, ligands containing an isopropylphosphine give the highest ee.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Substrate</th>
<th>% Conv</th>
<th>% ee (config.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3f</td>
<td>(\text{Ph-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>97 (R)</td>
</tr>
<tr>
<td>2</td>
<td>3f</td>
<td>(\text{Ph-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>97 (R)</td>
</tr>
<tr>
<td>3</td>
<td>3b</td>
<td>(\text{MeO}_2 \text{C-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>94 (S)</td>
</tr>
<tr>
<td>4</td>
<td>3f</td>
<td>(\text{MeO}_2 \text{C-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>99 (R)</td>
</tr>
<tr>
<td>5</td>
<td>3a</td>
<td>(\text{AcHN-} \text{CO}_2 \text{Me})</td>
<td>38</td>
<td>87 (nd)</td>
</tr>
<tr>
<td>6</td>
<td>3b</td>
<td>(\text{MeO}_2 \text{C-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>98 (S)</td>
</tr>
<tr>
<td>7b</td>
<td>3b</td>
<td>(\text{HO-} \text{CO}_2 \text{Me})</td>
<td>100</td>
<td>98 (S)</td>
</tr>
<tr>
<td>8</td>
<td>3b</td>
<td>(\text{HO-} \text{CO}_2 \text{Bn})</td>
<td>100</td>
<td>89 (S)</td>
</tr>
<tr>
<td>9</td>
<td>3f</td>
<td>(\text{Ph-} \text{CO}_2 \text{H})</td>
<td>45</td>
<td>78 (R)</td>
</tr>
<tr>
<td>10</td>
<td>3f</td>
<td>(\text{O}_3 \text{Me-} \text{O}_3 \text{Me})</td>
<td>100</td>
<td>87 (S)</td>
</tr>
<tr>
<td>11</td>
<td>3a</td>
<td>(\text{NHCBz-} \text{O}_3 \text{Me-} \text{O}_3 \text{Me})</td>
<td>100</td>
<td>55 (S)</td>
</tr>
</tbody>
</table>

a Reactions were performed in \(\text{CH}_2\text{Cl}_2\), \(\text{Rh/L} = 1:1.1\), \(\text{Rh/substrate = 1:100}\), 10 bar of \(\text{H}_2\), at 25 °C for 16 h using \([\text{Rh(nbd)}]_2\text{BF}_4\) as metal precursor. b –40 °C.
5.5 Kinetics

In order to investigate the mechanism of the IndolPhos-Rh AH, a kinetic study was carried out. These kinetic experiments were carried out in the AMTEC SPR16 consisting of 16 parallel reactors equipped with temperature and pressure sensors, and a mass flow controller, allowing the reaction rates to be determined from gas-uptake profiles. We focused our studies on the AH of methyl 2-acetamidoacrylate (MAA) using the catalyst generated in situ from ligand 3f and [Rh(nbd)₂]BF₄.

Initial rate-determination experiments revealed the high activity of the catalytic system. This required us to lower the catalyst loading to 0.01-0.05 mol%, which resulted in complete conversion after 5 minutes at room temperature and 10 bar H₂. In addition, gas-uptake profiles reveal no induction period suggesting very rapid activation of the precatalyst by hydrogenation of the diolefin. Using Blackmond’s kinetic analysis, product inhibition or catalyst decomposition was observed at higher conversions, which required us to determine the rate at an early stage of the reaction. Rate-determination from the gas-uptake profiles allowed us to determine the order in Rh-catalyst from a ln[Rh]/ln(TOF) plot (Figure 5.4). A first order is obtained from the slope of this plot, which is expected for a mononuclear Rh-catalyzed AH mechanism. Absolute turnover-frequencies of over 90,000 h⁻¹ are achieved by this catalytic system.

Next, we determined the order in olefin concentration at S/C ratio’s of 1250-2500 (Figure 5.5, top). The ln[olefin]/ln(TOF) plot yields a straight line with slope = 1, indicative of a first order reaction. A first-order dependency on the substrate concentration is rarely observed for AH of olefins, as the oxidative addition of dihydrogen is proposed to be the rate-limiting step. In these cases, Michaelis-Menten kinetics are proposed to be operable, in which the pre-equilibrium forming the catalyst-substrate complex lies on the side of the educts (vide infra). In order to arrive at saturation kinetics, we conducted rate-measurements at higher S/C ratio’s of 3400-5600. Indeed, the order in olefin is lowered to ca. 0.5, indicating that the pre-equilibrium is shifted (Figure 5.5, bottom). Unfortunately, further lowering of the

![Figure 5.4 Ln[Rh]/Ln(TOF) plot for the AH of MAA by [Rh(3f)(nbd)]BF₄ at S/C ratio’s of 4000-8000 and 10 bar H₂. ([Rh] in M, TOF in mol mol⁻¹ min⁻¹).](image)
Figure 5.5 $\text{Ln[olefin]/Ln(TOF)}$ plot for the AH of MAA by $[\text{Rh(3f)(nbd)}]\text{BF}_4$ at S/C ratio’s between 1250-2500 (top) and 3400-5600 (bottom), at 10 bar H_2. ([olefin] in M, TOF in mol mol$^{-1}$ min$^{-1}$)

amount of catalyst resulted in loss of activity, which is tentatively ascribed to very small impurities in the substrate that poison the catalyst. (Note: at S/C ratio’s over 10,000, the purity of the substrate has to exceed 99.9999 %)

Due to the limitations of the MAA system, we decided to perform a full reaction progress kinetic analysis of the AH of dimethyl itaconate (DMI) using ligand 3b. Previous studies by Heller and co-workers have shown that this substrate shows similar behavior in asymmetric hydrogenation compared to dehydroamino acid esters. Indeed, in this case we were able to lower the catalyst loading to an S/C ratio of 30,000 presumably because of lower levels of impurities in this substrate. The corresponding graphical rate equation is depicted in Figure 5.6.

The plot of reaction rate versus substrate concentration shows a strong, almost linear dependency. Therefore, for substrate concentrations below 3 M a first order approximation for the rate equation may be used. The influence of catalyst concentration and hydrogen pressure were thus determined using first order rate constants obtained by fitting of the experimental curves to a first order function (Figure 5.7). Both plots reveal, as expected, a first order dependency of the reaction on
Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: Kinetics and reaction mechanism

Figure 5.6 Rate versus substrate concentration plot for the AH of DMI by [Rh(3b)(nbd)]BF₄; a fit to equation 1 gives \(k_2 = 9.14 \pm 0.21 \, \text{M h}^{-1} \) and \(K_M = 5.01 \pm 0.16 \, \text{M} \).

the amount of catalyst and hydrogen pressure. For dimethyl itaconate, very high initial turnover frequencies are obtained (> 50,000 h⁻¹) and turnover numbers up to 30,000.

The kinetics of the AH of MAA and dimethyl itaconate by IndolPhos-Rh catalysts can best be described by Michaelis-Menten kinetics as was shown previously for diphosphine systems following the unsaturate/dihydride pathway.⁵ᵇ,⁵ᵈ,¹⁸ In this Michaelis-Menten model, reversible coordination of the olefin forming the diastereomeric substrate-catalyst complexes 1B, is followed by irreversible reaction with dihydrogen. The irreversible rate-determining step may then be either oxidative addition of dihydrogen or migratory insertion. The rate-equation can, under isobaric conditions (\(k_2 = k_2' \cdot [\text{H}_2] \)), be written as depicted in eq. 1, and two limiting cases can

Figure 5.7 Plot of first order rate constants versus catalyst loading (left) and hydrogen pressure (right) for the AH of DMI by [Rh(3b)(nbd)]BF₄.
be distinguished. If the olefin concentration is very high, the pre-equilibrium is completely shifted towards the catalyst-substrate complex and the rate depends solely on the rhodium (catalyst) concentration and hydrogen pressure (eq. 2). On the other hand, at lower olefin concentrations, the rate also depends linearly on the substrate concentration (eq. 3). The absolute values of these concentrations are determined by the magnitude of K_M (eq.4).

$$v = \frac{d[P]}{dt} = \frac{k_2 \cdot [Rh_0] \cdot [S]}{K_M + [S]}$$ \hspace{1cm} (eq. 1)

$$\frac{d[P]}{dt} = k_2 \cdot [Rh_0]$$ \hspace{1cm} for $K_M << [S]$ \hspace{1cm} (eq. 2)

$$\frac{d[P]}{dt} = \frac{k_2 \cdot [Rh_0]}{K_M \cdot [S]} = k_{obs} \cdot [S]$$ \hspace{1cm} for $K_M >> [S]$ \hspace{1cm} (eq. 3)

$$K_M = \frac{[A] \cdot [S]}{[1B]}$$ \hspace{1cm} (eq. 4)

The kinetic profiles for the hydrogenation of MAA and dimethyl itaconate indicate that under typical conditions, the reaction exhibits first order behavior (eq. 3). For dimethyl itaconate, values for k_2 and K_M could be obtained from the graphical rate equation by fitting the data to equation 1 (Figure 5.6). The very high value of K_M ($K_M = 5.01 \pm 0.16$ M) indicates that most of the catalyst is present as the solvent complex, i.e. the resting state of the catalyst. The measured value for K_M is unusually high for AH reactions, which generally exhibit zero-order kinetics and the substrate-catalyst complexes $1B$ are the resting state. Alternatively, the mechanism may follow a dihydride/unsaturate pathway in which the rate-determining step is the coordination of the olefin to the solvate-dihydride complex $2B$ or subsequent migratory insertion. However, the inability to detect solvate-dihydride species by high-pressure NMR spectroscopy speaks against this (vide infra).

5.6 High-pressure NMR spectroscopy

The kinetic experiments described above give valuable information about the rate-equation, however, it does not allow for detection of the intermediates in the catalytic cycle. We therefore turned to high-pressure NMR spectroscopy to obtain structural information about these intermediates. Also for these studies we used the in situ generated complex [Rh(3f)(nbd)]BF$_4$ (5), which exhibits two doublets-of-doublets in the 31P NMR spectrum at 141 and 54 ppm with $J_{PP} = 52.7$ Hz. When this complex is subjected to five bar pressure of molecular hydrogen in CD$_2$Cl$_2$, very broad signals are
obtained. However, when this species is reacted with olefin substrates and dihydrogen, the hydrogenation products were obtained with the same enantioselectivity. Addition of MeCN to this ill-defined species yields the MeCN-solvate complex, [Rh(3f)(MeCN)2]BF4, indicating that the species giving broad signals is the CD2Cl2-solvent complex. Formation of the well-defined solvate complex [Rh(3f)(CD3OD)2]BF4 is also achieved by changing the solvent to deuteromethanol, characterized by a new set of doublets-of-doublets at 146.4 and 78.4 ppm with JPP = 72.4 Hz. Attempts to detect the solvate-dihydride complex 2B at low temperatures following the protocol by Gridnev and Imamoto were unsuccessful.7a Furthermore, efforts to replace solvent molecules with substrates did not result in the formation of diastereomeric catalyst-substrate complexes 1B, which is in line with the kinetic profile (KM is very large).

The high-pressure NMR experiments are in agreement with the kinetic data as no substrate-catalyst complexes could be obtained. Instead, stable solvate complexes could be detected and will be the major resting state. The inability of the solvate complexes to form dihydrides at low temperatures indicates that an unsaturate/dihydride pathway is followed. Recent contributions from Gridnev and Imamoto suggest that dihydride formation may be accelerated by partial substrate coordination via the carbonyl function.7d This may indeed also occur in our system under catalytic conditions but we are unable to study this as no substrate-catalyst complexes can be prepared.

5.7 DFT calculations

The kinetic studies in conjunction with the high-pressure NMR studies discussed above point towards a unsaturate/dihydride pathway in which the absolute configuration of the product is determined in the oxidative addition of dihydrogen to one of the catalyst-substrate complexes 1B. As these species cannot be detected experimentally because of the large value of KM, we decided to calculate the four possible diastereomeric catalyst-substrate complexes 1B at a high level of theory (B3LYP, 6-31G*/LANL2DZ) without any constraints, for the hydrogenation of dimethyl itaconate, using ligand 3b. The obtained structures and energies are depicted in Figure 5.8.

The calculations indicate that one complex, 1B-proS-trans, appears to be much more stable than the other three complexes. The greater stability can be understood in terms of perturbation from the ideal square planar geometry preferred by Rh1 and trans-effect. In case of 1B-proR-trans, the olefin is tilted out of the coordination plane because of steric repulsion of the α,β-unsaturated ester with the bisnapthol moiety, forcing the methyl group of the ester to be eclipsing with the olefin fragment. 1B-proS-cis also displays out of plane coordination of the olefin, however, in this case caused by repulsive interactions between the saturated ester and the bisnapthol fragment. For 1B-proR-cis, the orientation of the substrate causes steric crowding
between the α,β-unsaturated ester and the bisnaphthol group and the phosphine-carbonyl \textit{trans}-disposition is less favorable compared to phosphoramidite-carbonyl \textit{trans}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Calculated (B3LYP, 6-31G*/LANL2DZ) structures and energies of diastereomeric catalyst-substrate complexes 1B.}
\end{figure}

We found experimentally that the S-enantiomer is obtained in 98 \% \textit{ee} using ligand 3b. This excellent result is in good agreement with the outcome of the DFT calculations, which predict that the diastereoisomer 1B-\textit{proS-trans}, leading to the S-enantiomer is the only populated one at room temperature according to the Boltzmann distribution. It is possible that olefin decooordination may occur during the oxidative addition step as proposed by Gridnev and Imamoto (\textit{vide supra}). Therefore, a full computational analysis of the reaction pathway would be necessary to substantiate the true origin of enantioselection. However, theory and experiment are in good agreement and suggest that a lock-and-key type mechanism is followed in the IndolPhos-catalyzed AH of dimethyl itaconate and most probably also for other substrates coordinating in a similar fashion.

The proposed mechanism differs significantly from the Halpern and Brown mechanism for \textit{C$_2$} symmetric diphosphines, in which the least stable diastereomeric substrate-catalyst complex leads to the product (\textit{vide supra}). Landis and co-workers
calculated the whole reaction pathway of the rhodium-catalyzed AH, using DuPHOS as the chiral ligand. They found energy differences between the major and minor catalyst substrate complexes of 3.7 kcal/mol and a total energy difference between the two pathways of 4.4 kcal/mol. In our case, the energy differences in the catalyst-substrate complexes are much larger (9.3 kcal/mol) at the same level of theory. In addition, the overall reaction activation energy (E_a) is ca. 15.3 kcal/mol for the hydrogenation of DMI, which is derived from the value of k_2 using the Arrhenius equation. Consequently, a mechanism similar to the one proposed by Evans and Reetz for C_1 symmetric P/S and monodentate ligands is much more likely to be operable for IndolPhos-Rh catalysts.

5.8 Conclusions

IndolPhos-Rh complexes are shown to be highly active (TOF $> 90,000 \ h^{-1}$) and enantioselective (up to 99 % ee) hydrogenation catalysts for a broad range of prochiral olefins, making them suitable candidates for industrial large scale AH processes. Their facile preparation allows for easy derivatization leading to rapid construction of a small ligand library. Kinetic studies indicate that the AH of MAA and dimethyl itaconate follows Michaelis-Menten kinetics, exhibiting a very large value for K_M, which indicates that the Rh-solvate complex is the major resting state of the catalyst. Several solvate complexes have been observed by high-pressure NMR spectroscopy and formation of neither substrate-catalyst complexes nor solvate-dihydride species is observed. This suggests that an unsaturate-dihydride mechanism is followed but we cannot exclude a dihydride-unsaturate mechanism completely. High-level DFT calculations indicate that only one of the four possible diastereomeric substrate-catalyst complexes is energetically accessible, which leads to the experimentally found absolute configuration of the product. We are currently investigating the full reaction pathway by DFT calculations to substantiate these findings.

In conclusion, the mechanistic studies on IndolPhos-Rh catalysts reported in this chapter are in line with a lock-and-key type mechanism of enantiodiscrimination as has been previously proposed for C_1 symmetric P/S and monodentate ligands. However, on the basis of the current data we cannot exclude other mechanistic pathways. Compared to the anti lock-and-key mechanism observed for C_2 symmetric ligands, this mechanism is more elegant and efficient as the major flux of the reaction proceeds through the major isomer, i.e. a higher effective catalyst concentration. For IndolPhos-Rh catalysts, however, a large amount of the catalysts exists as the solvate complex at typical conditions.

5.9 Experimental section

Kinetic gas-uptake measurements. The experiments were carried out in a AMTEC SPR16 consisting of 16 parallel reactors equipped with temperature and pressure sensors, and a mass flow controller. The apparatus is suited for monitoring gas uptake profiles during the catalytic
Chapter 5

reactions. The autoclaves were heated to 110 °C and flushed with argon (22 bar) five times. Next, the reactors were cooled to 25 °C and flushed again with argon (22 bar) five times. The autoclaves were charged with the appropriate amount of [Rh(nbd)₂(BF₄)] and substrate in 8.00 ml of CH₂Cl₂ under argon. The reactors were pressurized to the desired pressure with H₂ and the pressure was kept constant during the whole reaction. The reaction mixtures were stirred at 25 °C and the hydrogen uptake was monitored and recorded for every reactor. After catalysis the pressure was reduced to 2.0 bar and samples (0.2 ml) were taken for chiral GC analysis.

High-pressure NMR experiments. In a typical experiment a 5 mm sapphire high-pressure NMR tube was filled with a solution of [Rh(nbd)₂]BF₄ (5.6 mg, 0.015 mmol), ligand 3f (8.8 mg, 0.015 mmol), and CD₂Cl₂ or CD₃OD (0.5 mL). The tube was purged three times with 5 bar of H₂, and then pressurized with 5 bar of H₂. After vigorous manual shaking for ca. 2 min, the tube was inserted in the NMR spectrometer. NMR data for [Rh(3f)(CD₃OD)₂]BF₄. ¹H-NMR (500 MHz; CD₂OD; 253 K): δ 8.15 (s, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.82-7.79 (m, 2H), 7.63 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.13-7.09 (m, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 6.17 (t, J = 7.5 Hz, 1H), 6.01 (t, J = 1.8 Hz, 2H), 5.88 (d, J = 8.4 Hz, 1H), 3.09 (s, 3H), 2.85 (m, 3H), 1.66-1.64 (m, 2H), 1.62 (s, 3H), 1.52-0.93 (m, 12H) ppm. ³¹P-NMR (202 MHz; CD₃OD,): δ 146.43 (dd, J = 331.8, 72.6 Hz, 1P), 78.42 (dd, J = 180.3, 72.3 Hz, 1P) ppm.

Synthesis of [Rh(3b)(MeCN)]BF₄. Ligand 3b (100 mg, 0.18 mmol) was added to solution of [Rh(nbd)₂]BF₄ (67 mg, 0.18 mmol) in CH₂Cl₂ (4 mL) and stirred for 30 min at rt. Dihydrogen was bubbled through the solution for 30 min. Filtration through Celite followed by evaporation of the solvent in vacuo. Washing of the resulting orange solid with hexane (3 x 5 mL) and drying in vacuo gave the characteristic broad NMR spectra for the CH₂Cl₂-solvate complex. The compound was redissolved in MeCN (5 mL), stirred for 20 min at rt, and the solvent was removed in vacuo to give a yellow solid. The solid can be handled in air but decomposes overnight in CDCl₃ and upon storage in air for several days. Yield: 122 mg (82 %). ¹H-NMR (500 MHz; CDCl₃; 298 K): δ 8.16 (d, J = 8.8 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.54-7.50 (m, 2H), 7.43-7.32 (m, 5H), 6.99 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.37 (t, J = 8.8 Hz, 1H), 6.60 (d, J = 8.5 Hz, 1H), 2.68 (2 x td, J = 15.3, 7.8 Hz, 2H), 2.43 (s, 3H), 2.14 (br s, 6H), 1.49-1.33 (m, 9H), 1.17 (dd, J = 16.9, 6.9 Hz, 3H) ppm. ¹³C-NMR (126 MHz; CDCl₃; 298 K): δ 149.63 (d, J = 16.0 Hz), 147.70 (d, J = 5.2 Hz), 136.86 (d, J = 6.9 Hz), 132.68 (s), 132.33 (s), 131.86 (s), 131.57 (s), 131.22 (s), 130.71 (s), 128.55 (d, J = 3.1 Hz), 127.22 (s), 127.05 (s), 127.02 (s), 126.95 (s), 126.33 (s), 125.81 (s), 124.39 (s), 123.27 (d, J = 1.9 Hz), 122.99 (s), 122.34 (s), 121.46 (s), 121.10 (s), 119.55 (s), 115.28 (s), 70.68 (s), 27.52 (d, J = 8.7 Hz), 27.29 (d, J = 10.7 Hz), 26.61 (s), 20.23 (s), 20.08 (d, J = 4.5 Hz), 19.99 (s), 19.82 (d, J = 4.5 Hz), 11.13 (s), 2.26 (s) ppm. ³¹P-NMR (202 MHz; CDCl₃; 298 K): δ 148.45 (dd, J = 294.5, 63.1 Hz, 1P), 71.60 (dd, J = 159.2, 63.0 Hz, 1P) ppm. MS (ESI) calecd for [M – BF₄]⁺ C₃₉H₅₃N₃O₂P₂Rh, 746.16; found, 746.20.

X-ray crystal structure determination of 4. [C₃₃H₇₅NO₂P₂Rhl₂]BF₄ · CH₂Cl₂ + disordered solvent, Fw = 1156.78 [⁎], orange block, 0.25 x 0.12 x 0.09 mm³, orthorhombic, P2₁2₁2₁ (no. 19), a = 14.1237(1), b = 15.3310(1), c = 26.7687(2) Å, V = 5796.24(7) Å³, Z = 4, D₀ = 1.33 g/cm³ [⁎], μ = 0.54 mm⁻¹ [⁎]. 74726 Reflections were measured on a Nonius Kappa CCD diffractometer with rotating anode (graphite monochromator, λ = 0.71073 Å) up to a resolution of (sin θ/λ)max = 0.65 Å⁻¹ at a temperature of 150(2) K. Intensities were integrated with HKL2000[31]. An absorption correction based on multiple measured reflections was
performed using the program SADABS22 (correction range 0.74-0.95). 13196 Reflections were unique (R\textsubscript{int} = 0.041), of which 11865 were observed [I>2\sigma(I)]. The structure was solved with Direct Methods using the program SHELXS-9723. The structure was refined with SHELXL-9723 against F2 of all reflections. Non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were introduced in calculated positions and refined with a riding model. The crystal structure contains ordered dichloromethane solvent molecules, which were refined with full occupancies. The crystal structure also contains voids (542 Å3 / unit cell) filled with severely disordered dichloromethane molecules. Their contribution to the structure factors was taken into account using back-Fourier transformation with the SQUEEZE routine of the program PLATON24 resulting in 151 electrons / unit cell. 647 Parameters were refined with 11 restraints. R\textsubscript{1}/wR\textsubscript{2} [I > 2\sigma(I)]: 0.0351 / 0.0840. R\textsubscript{1}/wR\textsubscript{2} [all refl.]: 0.0418 / 0.0871. S = 1.041. Flack x-parameter25: -0.024(16). Residual electron density between -0.81 and 0.93 e/Å3. Geometry calculations and checking for higher symmetry was performed with the PLATON program.24 [*] derived parameters do not contain the contribution of the disordered solvent.

CCDC 756580 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational details. DFT calculations were performed using the Spartan '04 for windows program package,26 employing the B3LYP functional.27 The basis set was 6-31G* for all atoms,28 except for Rh, which was described by an effective core potential and the associated basis set LANL2DZ.29 Graphics were generated using MacPyMOL.30

5.10 Acknowledgements

Dr. M. Kuil and dr. R. J. Detz are thanked for assistance with the AMTEC experiments. Dr. M. Lutz and prof. dr. A. L. Spek are kindly acknowledged for the determination of the crystal structure of [Rh(3e)(cod)]BF\textsubscript{4}.

5.11 References

Chapter 5

22. Sheldrick, G. M. SADABS 2006/1, University of Gottingen, Germany, 2006.
Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: Kinetics and reaction mechanism