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4. Critical behavior 

 
 

4.1 Introduction 
 
During the last two decades, following the discovery of the quantum Hall effect by von 

Klitzing et al. [1] and the pioneering work on quantum criticality of the PP-transitions by 

Wei et al.  [2a-3], a host of experimental work has been done in order to shed light on the 

exact nature of scaling in the quantum Hall regime at low temperatures. The principal 

objective is to establish the following scaling laws for the experimentally observed Hall 

resistance RH and the longitudinal resistance R0 with varying magnetic field B and 

temperature T [2b] 

                                                   RH ,0 = FH ,0(∆B,T −κ )                                  (4.1)            

Here, ∆B = B – B* is the magnetic field relative to the critical value B* which corresponds 

to the center of a Landau band. The critical exponent κ equals the ratio  

   κ  = p / 2ν0                                       (4.2) 

with ν0 denoting the localization length exponent of the 2DEG and p is a finite temperature 

exponent determined by inelastic scattering. Eq. (4.3) determines the maximum slope of the 

Hall resistance RH with varying B to diverge algebraically as T goes to zero according to 

                                                                   ∂RH

∂B
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

max

∝ T −κ .                                           (4.3) 

Wei et al. originally extracted the numerical value κ = 0.42 from the transport data taken 

from a low mobility InP-InGaAs heterostructure which is independent of the index of the 

PP transition [2a-3]. Following the renormalization theory of the quantum Hall effect 

developed by Pruisken [2b] this experimental value was subsequently regarded to be 

universal.  

These remarkable advances have led several groups around the world to investigate the 

power law of Eq. (4.3) for a variety of different but otherwise arbitrarily chosen laboratory 

samples [4-7]. A range of different values for κ were measured, however, varying from 0.3 

to 0.9. The difficulty in experimentally establishing universality of the PP transition has 
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caused the quantum Hall community to split up into two different groups with entirely 

different physical objectives each.  

 

4.1.1 The ‘H.P. Wei’ school of thought 
 
The first group, briefly termed the ‘H.P. Wei group’, held on to the general belief that the 

critical exponent κ is universal. Motivated by the theoretical foundations of scaling 

established by Pruisken, this group experimentally pursued the universality of not only κ 

but also the complete scaling functions FH, 0 with varying T and B. It was well understood, 

however, that universality strictly holds in the limit where T goes to absolute zero. In 

practice this means that the transport measurements at finite T should be conducted on 

sufficiently homogeneous samples with potential fluctuations that are short-ranged relative 

to the magnetic length. 

 

4.1.2 The ‘phenomenological’ school of thought 
 
Quite unlike the experimental objectives of the H.P. Wei group, the second school of 

thought, briefly termed the ‘phenomenological group’, went on in different directions 

altogether. For example, to explain the differences in the experimental κ, finite size scaling 

experiments have been conducted that were aimed at disentangling the individual 

exponents values of p and ν0. These investigations led to the idea that the exponent p, 

unlike the localization length exponent ν0, is a material dependent parameter that varies not 

only from sample to sample but also from Landau level to Landau level.  

At a much later stage, experiments conducted on a new class of high quality samples 

indicated yet a very different behavior. Rather than a power law in T, the transport data 

were now fitted to a semi classical ‘linear law.’ (Shahar et al. [8]) This kind of data fitting 

clearly does not teach us anything about the phenomenon of Anderson localization and 

fundamentally upsets the entire idea of quantum criticality in the quantum Hall regime.   

At the time of this writing, the various conflicting results and ideas advocated by the 

‘phenomenological school of thought’ seem to have lost most of its support in the 

literature. What has in general been overlooked by this group is that the transport data taken 

from arbitrary samples at finite T do not necessarily reveal the true (scaling) behavior of the 
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2DEG in the limit T = 0. It may therefore not be a complete surprise to know that the most 

important advances in the field have emerged from entirely different sources.  

 

4.1.3 The PI transition 
 
First, there is the longstanding experimental problem of how to disentangle the effects of 

macroscopic sample inhomogeneity from the intrinsic transport properties of the 2DEG. In 

brief, it has turned out that defects such as small gradients in the electron density can cause 

major aberrations in the extraction of κ from the PP transitions [11-14]. These as well as 

other kinds of defects such as contact misalignment have a much less dramatic impact 

when the measurements are conducted on the PI transition. Subsequently, the PI transition 

became the primary focus of experimental interest. 

The most important conclusions drawn from the experiments on the PI transition can be 

found in Refs [15,16]. Unlike the ‘generally accepted’ exponent value κ = 0.42 previously 

obtained from three different PP transitions of an InP-InGaAs heterostructure, the correct 

experimental value extracted from the PI transition of the same sample turns out to be κ = 

0.57. The difference between these two experimental estimates can be explained based on 

density gradients that dramatically complicate the experiment on the PP transition but do 

not affect the κ taken from the PI transition.  

The detailed studies on the PI transition furthermore revealed universal scaling functions 

for the longitudinal conductance σ0 and the Hall conductance σH. These scaling functions, 

when plotted as T-driven flow lines in the σ0-σH conductance plane, display all the 

fundamental features of scaling that previously could not be observed from the data taken 

from the PP transitions. As pointed out in the original papers, these findings provide 

important information on the unification of the fractional quantum Hall effects based on 

composite fermion theory, in particular, the cross-over between the half-integral Fermi-

liquid state and the quantum critical state. 

Even though the advances made on the PI transition have resolved many longstanding 

controversies in the field, several major experimental difficulties have nevertheless 

remained. For example, since not much is known about the microscopic details of the low 

mobility InP-InGaAs heterostructure it is unclear whether the criteria for a homogeneous, 

short ranged random potential are being satisfied. The random alloy scattering in these 
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samples may, in fact, exhibit long-ranged components relative to the magnetic length. This 

would mean that the newly extracted value of κ = 0.57 is, in fact, an effective exponent and 

even lower temperatures are needed in order to be able to extract the much sought-after 

critical value.  

 

4.1.4 Numerical value of κ 
 
This takes us to the second important advance more recently made by the Princeton group 

of D.C. Tsui who investigated the PP transitions taken from a set of specially grown state-

of-the-art AlxGaAs/Al0.33Ga0.67As heterostructures with different Al concentration x [17,18]. 

By varying x one effectively varies the range of the potential fluctuations in these otherwise 

extremely homogeneous samples. For example, for small values of x the Al atoms are all 

distant apart from each other and the disorder potential is predominantly long- ranged. On 

the other hand, by increasing the concentration x the Al atoms come closer together and the 

random potential fluctuations become predominantly short-ranged. Upon further increasing 

the concentration x the Al atoms are believed to form clusters.  This clustering takes place 

over distances which are large relative to the magnetic length and, hence, the randomness 

becomes long-ranged again.  

The experimental values for κ extracted for different values of x generally exceed the value 

0.42. However, when the criteria for short range potential fluctuations were met D.C. Tsui 

et al. measured a value of κ = 0.42 in the temperature range from10 to 1000 mK. This 

experimental value - which surprisingly coincides with the original but incorrect result of 

H.P. Wei et al. - is now believed to be the correct universal value of κ. These impressive 

findings by the Princeton group unequivocally demonstrate the existence of quantum 

criticality in the quantum Hall regime and, hence, the correctness of the `H.P. Wei’ school 

of thought. 

 

4.1.5 Confronting controversies 
 
The advances made on both the PI transition and the critical exponent κ are an important 

step toward establishing a unified renormalization theory of the quantum Hall effects. At 

the same time, these advances are a landmark in the theory of Anderson localization and 

interaction effects. However, the subject matter is still at its infancy and certainly not free 

of controversies. First of all, it is important to emphasize that the newly established value 



Critical behavior                                                                                                                                               37 

of κ = 0.42 has absolutely nothing to do with the original findings of H.P. Wei et al. Unlike 

the claims made by D.C. Tsui et al., the coincidence is purely accidental thus creating a lot 

of confusion. The only way to understand the original H.P. Wei result of κ = 0.42 is by 

considering the combined effects of both long ranged potential fluctuations and 

macroscopic sample inhomogeneity. Whereas the former causes the experimental κ to 

increase from the universal value 0.42 up to the aforementioned value of 0.57, the latter 

causes κ to decrease from 0.57 back to the numerical value 0.42. Notice that this 

combination of experimental defects typically explains the different values of κ in the range 

0.3 – 0.9 previously extracted from arbitrarily chosen samples at finite temperatures. 

Secondly, there are the more recent attempts by the Princeton group to disentwine the 

critical exponents p and ν from the definition of κ in Eq. (4.0) [19]. In particular, by 

studying the scaling of the PP transition with varying sample size L rather than T, the 

individual exponent values have been extracted and the result is p = 2 and ν = 2.4 

respectively. Since the localization length exponent ν is numerically the same as the free 

electron result known from computer simulations, D.C. Tsui et al. conclude that the critical 

behavior of the interacting electron gas and the disordered free electron gas are in the same 

universality class. According to Pruisken this conclusion is incorrect. In particular, the 

advances made in the theory of localization and interaction effects have clearly shown that 

the infinitely ranged Coulomb interaction present in the laboratory sample renders the 

transport of the 2DEG entirely non-Fermi liquid-like. This transport behavior is 

characterized by previously unrecognized interaction symmetries (termed F-invariance) as 

well as distinctly different non-Fermi liquid critical exponent values.  

The experimental problem that was discarded by D.C. Tsui et al. is that finite size scaling 

can only be studied if it compares the data taken from different samples. However, along 

with different values of L one also finds that the characteristic length scale Ls and 

temperature scale Ts for scaling varies from sample to sample in an uncontrolled manner. 

Unlike κ which is measured on a single sample, there is as of yet no experimental design 

that warrants an unambiguous measurement of the individual exponent values of p and ν. 

Last but not least, the samples used by D.C. Tsui et al. do not permit an investigation of the 

PI transition since that lowest Landau level displays the fractional quantum Hall effect. 

This most likely complicates the study of macroscopic inhomogeneity effects and, along 

with that, the subtleties of a unified scaling diagram that incorporates both the integral and 
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fractional quantum Hall effects. In any case, D.C. Tsui et al. do not investigate the 

universal scaling functions for σ0 and σH and it remains unclear whether the PP transitions 

of their samples provide access to the irrelevant exponents describing the corrections to 

scaling. Future work probably will tell. 

 

4.1.6 Outline of this Chapter 
 
In this chapter we will present the results of magnetotransport measurements conducted on 

an InGaAs/GaAs quantum well with a geometrical factor of 1.5 (see Fig. 3.11) using four 

different electron densities (ne = 1.0, 1.3, 1.8 and 2.0 × 1015 m-2). We will consider both the 

PP and PI transition. Whereas the PP transitions give us the necessary information about 

the quality of the Hall bar in terms of density gradients, only the PI transition will be used 

to study quantum criticality. 

 The analysis of the data is done in much the same way as was done previously in Refs [11-

14]. The results will be compared with those obtained from a similar quantum well with a 

geometrical factor of 5.2 in Ref [11]. We will discuss the results of numerical simulations 

and see to what extent the relatively large gradients in the electron density of the 2DEG can 

explain the deviations found in the curves displaying critical behavior. 

Using our experimental results discussed in this Chapter as well as Chap. 5 we will 

construct a T-driven flow diagram that displays both relevant and irrelevant critical 

behavior. We then compare the results with the theoretical predictions on scaling similarly 

to what was previously done in Ref. [15]. 

 

4.2 InGaAs/GaAs quantum well with tunable carrier density: PP transition 
 
The InGaAs/GaAs 2DEG used for our magnetotransport measurements has a tunable 

carrier density. Being insulating in the dark, the electron density in the quantum well can be 

increased by illuminating the 2DEG with an infrared LED at low temperatures.  

The carrier density is an important parameter of the 2DEG since it determines at which 

values of the magnetic field the quantum Hall transitions occur. By changing the carrier 

density in the range in which the field-value at which the PI transition occurs is still 

achievable with our magnet, we can create different sample conditions. This allows us to 
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check for the universality of the critical exponents.  The wafer out of which the Hall bar 

was prepared has been grown by molecular beam epitaxy (MBE) at the Moscow state 

university. The 2DEG is located in a 12 nm thick In0.2Ga0.8As layer, separated from the 

doping layer by a 20 nm thick spacer. Etching of the Hall bar was done using 

photolithography. The carrier concentration in the sample can be varied smoothly between 

zero (insulating sample) and ne = 4 × 1015 m-2 with an accuracy better than 1 % [11]. To 

illuminate the 2DEG we send a current through the LED using a Keithley 2400 current 

source. The illumination was done stepwise by controlling the pulse duration and slowly 

increasing the current through the LED.  An image of the Hall bar is shown in Fig. 3.11 of 

the previous chapter. The Hall bar has 6 potential and 2 current contacts. Unfortunately one 

current contact and two potential contacts turned out to be high-Ohmic which reduced the 

possibility of directly probing the inhomogeneities in the carrier density of the Hall bar. 

Still there are other methods available to estimate the inhomogeneous nature of the carrier 

density. These methods have been applied and will be discussed in this chapter. In the 

following Figs. 4.1 a) - d) we will show the resistance- and Hall curves measured DC for 

the four densities attained after longer and longer illumination. All curves where measured 

using the DC method described in Chap 3. 

Figs. 4.1 a) – d) show the expected improvement of the quality of the data with increasing 

density. For the highest two densities (Figs. 4.1 c, d) the small overshoot of the resistivity 

(ρxy), at the beginning of the plateaus, still visible in the lowest two densities (Figs. 4.1 a, 

b), disappears.  The plateaus become quantized within 0.05 % of the expected values and 

ρxx becomes zero between the transitions.  
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Figure 4.1 Resistance and Hall-curve for a) ne = 1.0 × 1015 m-2, b) ne = 1.3 × 1015 m-2, 

c) ne = 1.8 × 1015 m-2 and d) ne = 2.0 × 1015 m-2. The measurement current is 10 nA. T 

= 100 mK. 

 

 

4.2.1 Determining inhomogeneities 
 
A great obstacle in probing the quantum critical behavior is the inhomogeneous nature of 

the Hall bar. Inhomogeneities in the electron density of the 2DEG are mainly a result of the 

growth process of the wafer. The simplest approach to the inhomogeneity problem is a 

gradient in the electron density throughout the Hall bar. The most harmful consequence of 

inhomogeneities is that transitions take place at different values of the magnetic field 
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throughout the 2DEG and make an accurate determination of the scaling behavior 

impossible. This is especially true for the PP transitions [11]. It is important therefore to be 

able to make an estimate of the magnitude of this gradient in the electron density. The 

common way of doing this is to measure the Hall resistance at two places of the Hall-bar. 

The shift in curves then tells us how large this gradient is. Unfortunately only one pair of 

Hall contacts and one pair of resistance contacts were present on the Hall-bar. Another way 

of estimating the magnitude of the gradient is making use of reflection symmetry [11,13]. 

Reflection symmetry states that the longitudinal resistances measured at both sides of the 

Hall bar interchange by reversing the polarity of the magnetic field.  

                                                                                                              (4.4) )()( BRBR b
xx

t
xx −=

where t and b stand for top and bottom respectively. So having only one pair of resistance 

contacts but measuring for reversed field also, gives us the data for the opposite pair of 

resistance contacts. It is shown that the longitudinal resistances at the top and bottom of the 

Hall bar are given by [13] 
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ρα                                                                 (4.7) 

 

From Eq. (4.2) and (4.3) it follows that 

                                                Rt
xx (B) − Rt

xx (−B) = αL                                                 (4.8) 

Combining Eq. (4.4) and (4.5) gives 

                                                  L
x

BRBR H
xx

t
xx

t

∂
∂=−− ν

δν
δρ)()(                                         (4.9) 

Zero coordinates (x, y) are taken at the center of the Hall bar. Eq. (4.9) tells us that the 

difference of Rxx for both field polarities is equal to the slope of the Hall resistivity times 

the gradient along the total length L of the Hall bar. ρH is the Hall resistivity for the ideal 

case without gradient. Since we do not know this value, we approximate it by 
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2

)()( BRBR xyxy
H

−+
=ρ                                                 (4.10) 

Plotting our data versus the filling factor ν for the PP-transition 2     1 and applying Eqs. 

(4.9) and (4.10) gives us the ∆Rxx and δρH/δν  curves for ne = 1.0 and 1.3 × 1015 m-2 (Fig. 

4.2) and ne = 1.8 and 2.0 × 1015 m-2 (Fig. 4.3). 
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Figure 4.2 ∆Rxx for both field polarities (top) and slope of ρH  versus filling factor 
(bottom)  at T = 100 mK for a) ne = 1 × 1015 m-2 and b) ne = 1.3 × 1015 m-2. 

 

Using Eq. 4.9 the ratio of peak values (top/bottom) gives us approximately a gradient of 4.7 

% for the lowest density. Also interesting is to look at the shift of the lower curve with 

respect to the upper curve. In doing so we assume that the Hall transition occurs at a local 

filling factor, while the Rxx transition occurs at some sort of averaged filling factor over the 

whole Hall bar. Twice this shift should give an approximate value for the gradient. In this 

case using 2⋅∆ν/ν also results in a gradient of 4.7 %.  

In Table 4.1 the same results for the other densities are shown. Notice how close the results 

of both methods are. From this it follows that the Hall bar is the most homogeneous at ne = 

1.8 × 1015 m-2. 
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Figure 4.3 ∆Rxx for both field polarities (top) and slope of ρH  (bottom) versus filling 
factor at T = 100 mK  for a) ne = 1.8 × 1015 m-2  and b) ne = 2.0 × 1015 m-2. 

 

The density gradients obtained from the analysis in Figs. 4.2 and 4.3 for the different  

densities are listed in Table 4.1.  

                      Table 4.1 Density gradients for the four different densities 

ne (m-2) 
Gradient (%) 

reflection symmetry 

Gradient (%) 

shift between ∆ Rxx and  δρH/δν curves 

1.0 × 1015 4.7 4.7 

1.3 × 1015  3.0 2.4 

1.8 × 1015  1.4 1.7 

2.0 × 1015 1.8 1.8 

Another way of estimating the gradient is by simulating the PP-transition numerically [11]. 

Since a gradient causes a difference between the  and t
xxR Rxx

b curve, we can simulate a 

transition using the parameters obtained from the experiment (T0,  κ) and vary the gradient 
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until we get a result similar to the experimentally obtained curves. The measured PP 

transitions for the four different densities are presented in Fig. 4.4. Simulations using the 

equations shown in [21] are presented in Fig. 4.5. The gradients here are 2.5 % and 5 %. 

More about simulations will be discussed in section 4.4.  
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Figure 4.4  ρxx at the PP transition 2 → 1 for positive and negative field for a) ne = 1.0 
× 1015 m-2, b)  ne = 1.3 × 1015 m-2, c) ne = 1.8 × 1015 m-2 and d) ne = 2.0 × 1015 m-2. T 
= 100 mK. 
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Figure 4.5 Numerical simulation of ρxx at the PP transition 2 → 1 for a) 2.5 % and b) 
5 %. 
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First of all it should be noticed that in both the simulated curves and the measured data the 

transition does not occur at the theoretically expected filling factor of 1.5. The higher the 

gradient, the more the actual critical filling factor deviates. This deviation however, is 

much smaller for the simulated cases than for the measured ones, for comparable gradients. 

For example if we consider ne = 1.8 × 1015 m-2, where the density gradient according to 

reflection symmetry is 1.4 %, the critical filling factor is shifted to 1.43, whereas in the 

simulated case (2.5 %) it is only shifted to 1.49. Now consider the ratio of the maximum 

peak values for the different densities as shown in Table 4.2.            

 
               Table 4.2 Ratio of maximum peak values of Rxx,max (B↑) /Rxx.max (B↓)  
               for the four measured densities and the two simulated gradients. 

ne (m-2) Rxx,max (B↑) /Rxx.max (B↓) 
 

Gradient (%) 
(simulated) 

 
Rxx,max (B↑) /Rxx.max (B↓) 

1.0 × 1015 1.6 2.5 1.2 

1.3 × 1015 1.8 5 2.0 

1.8 × 1015 1.4   

2.0 × 1015 1.6   

 

The ratio Rxx,max (B↑) /Rxx.max (B↓) follows the same trend as seen in the previously 

discussed methods, being the lowest for the third density and then increasing slightly for 

the highest density. From Table 4.2 we can conclude that there is a correspondence 

between simulations and experiment. Summarizing we can say that we have approximated 

the inhomogeneous nature of the 2DEG by a density gradient along the current direction of 

the Hall bar and that we have tried to determine this gradient in three different ways from 

the PP-transition: From reflection symmetry, from the shift in filling factor between the 

transitions of the Hall and longitudinal resistance and by making use of numerical 

simulations. The answers obtained from all three methods correspond with each other. 

 

4.3 The PI-transition  
 
In the previous paragraph we showed curves of magnetotransport data taken on the 2DEG 

before it reached the insulating state. This has been done only for the lowest temperature 

measured (100 mK). We did not consider any temperature dependence of the slope of the 

plateau-plateau transitions of ρH or the width of the peaks of the longitudinal resistance, 
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since in the past it turned out that these transitions are not suited for investigating critical 

behavior. The universal critical behavior is too much affected by sample dependent aspects 

like inhomogeneities in the electron density of the 2DEG. It has also been shown that for 

the PI-transition it is possible to disentangle the universal critical behavior from sample 

dependent aspects [11,12].  In this section we will examine the PI transition for all four 

measured densities.  The resistivity near the critical filling factor νc follows the empirical 

law [11,15,20]:   

         )(/)/ln( 0, Tcxxxx ννρρ ∆−=                                            (4.11) 

where:                                          κν )/()( 00 TTT =                                                            (4.12)           

Figs. 4.6 and 4.7 show the longitudinal resistance near the PI transition on a semi-log plot, 

both as a function of the filling factor and the magnetic field for ne = 1.8 and 2.0 × 1015 m-2. 

By plotting the resistivity in this way we can directly extract )T(0ν  from the slope of the 

curves near νc.  

 

Figure 4.6 The longitudinal resistance in the regime of the PI transition for twelve 
different temperatures: 0.09, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 K as 
a function of filling factor (lower axis) and magnetic field (upper axis). The crossing 
point indicates the location of the PI-transition. The electron density is 1.8 × 1015 m-2. 
I = 10 nA. 
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Figure 4.7 The longitudinal resistance in the regime of the PI-transition for ten 
different temperatures:  0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 K as a 
function of filling factor (lower axis) and magnetic field (upper axis). The crossing 
point indicates the location of the PI-transition. The electron density is 2.0 × 1015 m-2, 
I = 10 nA. 
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Data for the lowest two measured densities (1.0 and 1.3 × 1015 m-2) are not shown. The value 

of ρxx,c deviates up to 6% from the ideal value of h/e2. This deviation is explained by 

sample inhomogeneities. Indeed as the density increases and the sample becomes more 

homogeneous, the value of ρxx,c shifts towards its ideal value. Plotting the inverse of the 

slope of the resistivity curves (ν0) in the vicinity of the PI-transition as function of the 

temperature on a log-log plot illustrates its critical behavior. 

In Fig. 4.8 this is shown for four densities. The slopes of the curves are: 0.43 for the lowest 

two and 0.53 for the highest two densities. 

A comparison between the curves that we obtained and the ones obtained by Ponomarenko 

[11] on Hall-bar 3388#1, with a geometrical factor of 5.2 is shown in Fig. 4.9. The values 

of ν0 coincide better for the highest density.  
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Figure 4.8 Temperature dependence of ν0 for four different electron densities.  
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Figure 4.9 Comparison of the Temperature variation of ν0 for sample 3388#1-W and 
3388#1 [2], a) for ne ≈ 1.0 × 1015 m-2, b) for ne = 2.0 × 1015 m-2. The straight lines 
representing slopes of 0.57 and 0.42 are given as a guide to the eye only.  

 

4.4 Simulating the PI-transition 
 

Hall-bars in practice turn out to be non-ideal. This means that in an attempt to measure 

universal properties, like critical exponents, there will always be some unwanted influences 

of sample-dependent (and thus non-universal) aspects. As discussed in section 4.2 one of 

the main disturbing factors in probing critical behavior are so called macroscopic sample 

inhomogeneities. In the simplest approach the inhomogeneity is a density gradient in the 

length direction of the Hall-bar. Making use of numerical simulations we are able to 

determine the influences of these inhomogeneities on the measured critical behavior. For 

the simulations we used software written by L.A. Ponomarenko [11], which allows 
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simulating a gradient in the electron density of the 2DEG. The gradient can be defined both 

in the direction parallel to the current flow (along the Hall bar) or perpendicular to the 

current flow. The Hall bar used in the simulations can be represented as follows: 

 

Figure 4.10 Representation of Hall bar used in numerical simulations. 
 

The dimensions taken for the Hall bar are based on realistic ones. For the ratio between 

length, width and distance between the pair of Hall contacts we used 17:2:3. The 

simulations were done starting for zero gradient and then increasing the gradient between 

the Hall contact pairs in the x-direction up to 30%. The results are shown in Figs. 4.11a-c, 

where the behavior of ρxx is plotted near the PI transition for increasing gradient in the 

electron density. With increasing gradient the crossing point of the resistivity curves 

becomes less well defined.  It spreads out due to shifting of the low temperature curves. 

The same is observed experimentally. The slope determined from the log-log plots on the 

right side starts to deviate from the ‘zero-gradient’ value of 0.58 with increasing gradient. 

This deviation however starts after a relatively high value of the gradient (>10%). As 

shown before [11], it confirms that the PI-transition is much less sensitive for density 

gradient than the PP-transitions. If the gradient exceeds a certain limit, also the resistivity 

values near the PI-transition are distorted.  
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Figure 4.11  Results of numerical simulations a) 10 % gradient in x-direction b) 10 % 
in x-direction and c) 30 % gradient in the x-direction. 
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4.5 Conclusions  
 

• Magnetotransport measurements have been carried out on an InGaAs/GaAs QW at 

four different electron densities tuned by illumination in the range 1.0-2.0×1015 m-2 

in order to study the 2→1 PP and PI transitions.  

• The density gradient in the Hall bar was determined from the 2→1 PP transition 

by the method of “reflection symmetry”. The gradient ranges from 1.4 to 4.7 % for 

the investigated densities.  

• The effect of the density gradient on the magnetotransport data was investigated 

by numerical simulations for the 2→1 PP and PI transition. The results are in good 

agreement with those observed in the experimental data. 

• Scaling of the PI transition was investigated by extracting the temperature 

variation of ν0 from the longitudinal resistance data. The critical exponent κ falls 

in the range 0.43-0.53. The latter value is slightly lower than the value  κ = 0.57 

obtain previously [11] on a narrower Hall bar prepared from the same 

InGaAs/GaAs wafer.  
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