HE4: Clinical applications in gynaecological cancer
Stiekema, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 2

New biomarkers in epithelial ovarian cancer: needed or redundant?

A Stiekema
CM Korse
NK Aaronson
WJ van Driel
GG Kenter
CAR Lok

Accepted for publication in European Journal of Gynaecological Oncology, June 2016
Abstract

Objective For many years, intensive research has been dedicated to the development of sensitive biomarkers to detect various malignant diseases, including for the differentiation between a benign or malignant ovarian mass. One of these biomarkers is HE4, which has been shown to have a higher specificity than, and comparable sensitivity to CA125. HE4 is included in some prediction models. These new models have not yet been widely implemented in standard clinical care. We investigated the perceived need for new biomarkers and prediction models among Dutch gynaecologists.

Methods A web-based survey containing 38 questions was sent to all gynaecologists (in training) registered by the Dutch Society of Obstetrics and Gynaecology.

Results 313 respondents completed the survey (23% response rate), of which 29% were specialised in or devoted at least part of their practice to oncology. Approximately two-thirds of the respondents indicated that there is a need for a new biomarker. Respondents indicated that they would use HE4 primarily as a diagnostic tool in the case of a pelvic mass (57%), followed by screening in case of risk factors (30%), detection of recurrent disease (23%), monitoring therapy response (22%), and as a prognostic factor (10%). Only 11% would not use HE4 at all.

Conclusion Evaluating the need for new technologies and diagnostics, including biomarkers, is important to avoid expensive research with minimal clinical implications. In general, there is a perceived need for a new biomarker, if it can be used to improve the accuracy of diagnosis in patients with a pelvic mass.
New biomarkers in epithelial ovarian cancer: needed or redundant?

Introduction

For many years, intensive research has been done on biomarkers and the development of new prediction models to improve detection of various malignant diseases. The Risk of Malignancy Index (RMI), first developed by Jacobs et al. in 1990 (1), and later revised by Tingulstad et al. in 1996 (2), is a widely used prediction model based on serum CA125 level, specific ultrasound features and menopausal status. The RMI can be used to differentiate preoperatively between a benign and malignant ovarian mass. In the Netherlands, the selection of patients with a complex ovarian mass who need to be referred to a gynaecologic oncology unit, is based on the RMI score, for which a cut-off level of ≥200 is used. Using the RMI to triage between treatment by a general gynaecologist or a gynaecologic oncologist has proven to be cost-effective.(3) After development of the RMI, several other diagnostic models for the assessment of an ovarian mass have been described in the literature, and some are preferred over the RMI.(4) For example, the International Ovarian Tumour Analysis (IOTA) group developed the Logistic Regression model 2 (LR2) and Simple Rules; two models that rely on the presence or absence of malignant features on ultrasound only.(5,6) New serum biomarkers to detect epithelial ovarian cancer (EOC) have been investigated as well. Biomarkers can play a role in various stages of a disease: 1) before the diagnosis in risk assessment and screening; 2) at diagnosis to enable monitoring of treatment; and 3) during follow-up to detect recurrent disease. Studies evaluating gene expression profiles in EOC have found that the WFDC2 gene located on chromosome 20, is amplified in EOC and, to a lesser extent, in healthy tissue.(7,8) This gene encodes the glycoprotein Human Epididymis protein 4 (HE4). HE4 has been studied extensively as a serum biomarker, and has been found to have a comparable sensitivity to and higher specificity than CA125 in differentiating between benign and malignant ovarian masses.(9,10) Alternatively to the LR2 and Simple Rules that do not include biomarkers, the Risk Of Malignancy Algorithm (ROMA) divides patients into low and high risk of having ovarian cancer using serum levels of CA125 and HE4, and menopausal state.(11) The shared purpose of developing these new biomarkers and prediction models is to improve the preoperative selection and diagnosis of patients with suspected ovarian cancer, as both the disease-specific and progression-free survival of patients with high stage EOC is improved when surgery is performed by a gynaecologic oncologist.(12,13) The diversity and multiplicity of models and biomarkers raises questions about what clinicians really need, what can be easily incorporated into their clinical practice,
and what is likely to lead to significant changes in daily practice. This knowledge is indispensable for the implementation of innovative models.

The aim of this survey was to investigate the perceived need for new biomarkers and prediction models among gynaecologists and gynaecologists in training.

Methods

All gynaecologists and gynaecologist in training registered by the Dutch Society of Obstetrics and Gynaecology were invited to participate in a web-based survey. The questionnaire contained 38 questions, and the maximum time to complete was estimated at 10-15 minutes. A link to the questionnaire was sent by email in March, 2014 and two reminders were sent in a period of 6 weeks to those who had not yet responded. The questionnaire was developed for gynaecologists treating patients with ovarian masses, but was sent to all gynaecologists, including obstetricians, fertility-specialists and uro-gynaecologists to avoid missing colleagues interested in the subject. The survey was closed at the end of May, 2014.

The questionnaire included both closed- and open-ended questions, as well as room for comments. Topics addressed in the questionnaire included: 1) background characteristics; 2) current diagnostic work up in case of an ovarian mass; 3) awareness and use of new biomarkers and prediction models; 4) perceived need for new biomarkers. The survey was piloted tested on 6 gynaecologic oncologists, resulting in some minor revision of question wording.

Results were analyzed for all respondents together, but also for the subgroup of gynaecologists in training, gynaecologists, gynaecologic oncologists or gynaecologists devoting at least part of their practice to gynaecologic oncology and gynaecologists with another subspecialty then oncology. In case of substantial differences between subgroups the results are explicitly mentioned.

Statistical analyses were performed using SPSS version 22.0. Descriptive statistics and frequency distributions are reported.

Results

The questionnaire was sent to 1,380 gynaecologists and gynaecologists in training, of whom 313 returned a completed questionnaire (an overall response rate of 23%). The response rate for gynaecologists was slightly higher (24%) than for gynaecologists in training (21%). The background characteristics of the respondents are shown in table 1. Of these 313 respondents 229 (73%) were gynaecologists and 84 (27%) gynaecologists in training. Of all respondents, 92 (29%) were specialized
Table 1
Demographic features and specialization/focus of gynaecologists and gynaecologists in training

<table>
<thead>
<tr>
<th>SETTING</th>
<th>SPECIALIZATION / FOCUS AREA *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General gynaecology (%)</td>
</tr>
<tr>
<td>Gynaecologist (n = 229)</td>
<td>99 (43)</td>
</tr>
<tr>
<td>Community hospital (%)</td>
<td>172 (75)</td>
</tr>
<tr>
<td>Specialized oncologic center (%)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Other ** (%)</td>
<td>14 (6)</td>
</tr>
<tr>
<td>Gynaecologist in training *** (n = 84)</td>
<td>39 (46)</td>
</tr>
<tr>
<td>General gynaecology (%)</td>
<td>16 (19)</td>
</tr>
<tr>
<td>Oncology (%)</td>
<td>15 (18)</td>
</tr>
<tr>
<td>Perinatology (%)</td>
<td>19 (23)</td>
</tr>
<tr>
<td>Urogynaecology (%)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Fertility (%)</td>
<td>7 (8)</td>
</tr>
<tr>
<td>Gynaecologic oncologist (n=92)</td>
<td>24 (26)</td>
</tr>
</tbody>
</table>

*more than one answer possible
**private practice or not otherwise specified
***62 out of 84 gynaecologists in training answered the question about their focus area

The majority of all respondents worked in a community hospital (69%) or a tertiary referral center (25%). Only a very small percentage worked in a specialized oncology center (2%) or a private clinic (1.6%), and the remaining did not specify their work location.
The large majority of respondents indicated that they perform a gynaecological examination (94%) and transvaginal ultrasound (96%) as part of the diagnostic work up of patients with a pelvic mass. Of all available and well-known biomarkers, serum CA125 is used most frequently (93%), followed by CEA (68%), CA19.9 (20%) and CA15.3 (17%). A Computerized Tomography scan (CT-scan) as diagnostic imaging modality for further classification of a pelvic mass is preferred over a Magnetic Resonance Imaging scan (69% versus 7%).

Figure 1 shows how often all respondents determine serum CA125 values for different clinical purposes. Serum CA125 is most frequently used for the diagnosis of patients with a pelvic mass, but also for monitoring response to treatment and detection of recurrent disease of EOC. Subgroup analysis of gynaecologic oncologists versus gynaecologist with other expertise, revealed that the former more often use CA125 for monitoring of treatment response (72% always or often) compared to the latter (42% always or often). The remaining results were not substantially different when different subgroups were analysed.

Of all respondents, 85% reported using the RMI during the diagnostic work up of a patient with a pelvic mass. Only 4% indicated not using the RMI at all.

Figure 1
Histogram showing the distribution of the use of serum CA125 for different clinical purposes in patients with ovarian cancer (OC)
These results were similar when analysed for the subgroup of gynaecologic oncologist and gynaecologists in training separately. The percentage of patients referred unnecessarily to a tertiary center based on a $\text{RMI} \geq 200$ was estimated by all respondents at 20% (false positive). In contrast, the percentage of patients not referred to a tertiary center based on a $\text{RMI} < 200$ that should have been referred was estimated to be only 10% (false negative).

The majority (63%) of all respondents believe that there is a need for a new biomarker that can be used in the diagnostic process of in patients with a pelvic mass, and 59% expressed specific interest in biomarker HE4. These percentages were higher among those specialised in oncology (70% and 67%, respectively), but lower for the subgroup of gynaecologists in training (61% and 54%, respectively). However, of all respondents 37% considered the current CA125 and RMI satisfactory for differentiating between a benign and malignant pelvic mass.

The primary purposes for which HE4 would be used are for diagnostics in case of a pelvic mass (57%) and for screening for ovarian cancer in the presence of risk factors (30%) (see table 2). About 30% of respondents also indicated that they would use serum HE4 in combination with CA125. They would use serum HE4 primarily among patients with a pelvic mass (44%) or with low stage (International Federation of Gynecology and Obstetrics (FIGO) I-II) EOC (46%)(see table 2), but also for patients with endometrioses (11%) and pregnant women with an adnexal cyst (9%). For the subgroup of gynaecologic oncologist, the primary purpose for which they would use HE4 was also for diagnostics in case of a pelvic mass (65%) or screening in case of risk factors (33%), and 39% would only use it in combination with CA125.
Table 2
Overview of purposes and groups of patients for serum HE4 use answered by all respondents and subgroup of gynaecologic oncologists and gynaecologists in training

<table>
<thead>
<tr>
<th>Question *</th>
<th>All respondents (%) ** (n=313)</th>
<th>Gynaecologic oncologist (%) ** (n=92)</th>
<th>Gynaecologist in training (%) ** (n=84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For what purpose would you want to use serum HE4?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening for ovarian cancer in case of risk factors</td>
<td>30</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>Diagnostic process in case of a pelvic mass</td>
<td>57</td>
<td>65</td>
<td>51</td>
</tr>
<tr>
<td>Monitoring therapy in patients with ovarian cancer</td>
<td>22</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>As prognostic factor for ovarian cancer</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Detection of recurrent disease of ovarian cancer</td>
<td>23</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>I would only use it in combination with CA125</td>
<td>29</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>I would only use it if CA125 value is normal</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I would not use it at all</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>For which group of patients do you think determination of HE4 can be of additive value?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low stage ovarian cancer</td>
<td>46</td>
<td>54</td>
<td>38</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>11</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Pregnant women with an ovarian mass</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Every patient with a pelvic mass</td>
<td>44</td>
<td>44</td>
<td>38</td>
</tr>
<tr>
<td>No patients</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

* More than one answer possible
** Percentages are given with missing values included

We asked respondents to indicate the requisite gain in sensitivity and specificity of a new biomarker. Given a sensitivity and specificity of CA125 of 80-85% and a specificity of 75% in FIGO stage III-IV EOC, respondents indicated that, on average, they would want HE4 to have a sensitivity of 90% (range 65 to 100%) and a specificity of 89% (range 75 to 100%).

In the case of low stage EOC (FIGO I-II), given a sensitivity of CA125 of 70% and specificity of 75%, these figures were 88% (range 70 to 100%) for sensitivity and 89% (range 75 to 100%) for specificity. Two-thirds of the respondents believed that costs should be carefully evaluated before implementation of a new tumour marker in clinical practice; 76% expected the costs for HE4 to be acceptable.

Nineteen percent of the respondents were familiar with the ROMA compared to 39% of those with an interest in oncology, but only 0.9% reported actually using it. The ROMA was known by 21% of the gynaecologists in training and 2% reported using it. The majority of all respondents (54%) and subgroup of gynaecologic oncologist (65%) indicated being familiar with the Simple Rules, and 31% reported using them regularly. Twenty-seven percent of the total sample was familiar with IOTA LR1 and LR2; this was 48% of the 92 gynaecologists with a specialisation in oncology. Of the gynaecologists in training, 52% was familiar with the Simple Rules but only 18% reported using them regularly, while the IOTA LR1 and LR2 were
only known by 26%. The Simple Rules and the IOTA LR1 or LR2 were considered applicable in daily clinical practice by 76% and 62% of all respondents, respectively.

Discussion

The results of our survey indicate that there is a perceived need for a new biomarker that can be used in the diagnostic process of a patient with a pelvic mass. The main reason given for this was that the specificity of CA125 is considered too low for this purpose. However, 37% of the clinicians considered the current CA125 and RMI satisfactory for differentiating between a benign and malignant pelvic mass. Previous studies have shown that the prognosis of patients with high stage EOC is improved when their surgery is performed by a gynaecologic oncologist.(12) For this reason, a good deal of research has focused on improving the selection of patients with suspected ovarian cancer. Currently, in the Netherlands the RMI is used to identify patients with a high risk of having ovarian cancer for whom referral to a specialised center for further treatment is indicated. Our sample of gynaecologists (in training) estimated that about one in five of patients with a pelvic mass are misclassified as being at ‘high risk’ for ovarian cancer (RMI ≥ 200), and 10% are misclassified as being at ‘low risk.’ Neither of these estimates reflects the expected specificity and sensitivity of the RMI of 87-91% and 70-75%, respectively, based on a recent review and meta-analysis.(4) This suggests that, in spite of their clinical experience, gynaecologists, may underestimate the screening properties of the RMI as described in literature.

Our results indicate that the majority of respondents is interested in HE4 as a possible new biomarker. In line with the results of Macedo et al(9), other studies have shown that it is primarily the specificity that is improved when HE4 is used instead of CA125 for the differentiation between benign and malignant pelvic masses.(10,14) The mean sensitivity and specificity of HE4 in postmenopausal women indicated as desirable by our sample for differentiating between a benign and malignant ovarian mass was 90% and 89%, respectively. This is substantially higher than the sensitivity and specificity of CA125, which is estimated by the respondents to be 74% and 72%, respectively, in their own patient population. A recent meta-analysis on HE4 as a tumour marker reported a pooled sensitivity of 74% and specificity of 87% in postmenopausal women; thus HE4 does not appear to yet meet these high expectations.(9)

CA125 is known to be elevated in only 50% of patients with low stage ovarian cancer. With this background information, approximately half of our sample indicated that the use of HE4 could be a useful addition to CA125 for diagnosing patients with low stage ovarian cancer. For high stage EOC (FIGO III-IV), a biomarker is thought to be
of less diagnostic value given that, in most cases, the diagnosis can be made based on clinical and ultrasound examination. While 57% of respondents would use serum HE4 for the diagnosis of patients with a pelvic mass, there is less interest in the use of HE4 as a prognostic factor, for detecting recurrent disease or for monitoring of treatment. This may change, as the results of future studies become available and HE4 is used more widely in clinical practice.

There have also been developments concerning new predictive models that do not use biomarkers. Kaijser et al. concluded in their systematic review and meta-analysis that an evidenced-based approach to the preoperative characterisation of a pelvic mass should include the use of IOTA Simple Rules (SR) or the LR2 model, particularly for premenopausal women. Both models are based on the presence or absence of factors suspicious for malignancy on ultrasound. The fact that these prediction scores are not used more regularly, might be explained by the fact that they are both relatively new and may require specific training.

There are several limitations of our study that should be noted. First, although we attempted to survey the entire population of gynaecologists (in training) in the Netherlands, the response rate was low (23%). Thus, the results of our survey cannot necessarily be generalised to the large population of gynaecologists of interest. Second, our results are based on an ad hoc questionnaire, albeit one developed by professionals experienced in clinical gynaecology and survey research. Although we are confident of the content validity of our questionnaire, there are no other published data with which to compare our results. Finally, we realize that the field of biomarker research is developing quickly. Thus our survey represents a snapshot of the views and perceptions of gynaecologists given current levels of knowledge and understanding. This picture may change as new studies emerge, and the use of new biomarkers in clinical practice increases.

Our study also has several noteworthy strengths. To our knowledge, it is the first survey conducted among gynaecologists (in training) to evaluate the perceived need for and opinions about the use of biomarkers in patients suspected of having ovarian cancer. Although the overall response rate was low, we nevertheless were able to recruit a relatively large number of gynaecologists (>300) into the study.

In summary, our survey results suggest that there is interest in the use of new biomarkers that can be used in the diagnosis of patients with a pelvic mass and possibly for other purposes as well. The sine qua non for using these new markers is that they perform significantly better than those currently available.
Acknowledgements

Research time of A. Stiekema was partially funded by Fujirebio Diagnostics Inc. Fujirebio had no influence on the analysis or writing of this article.
References

8. Hellstrom I, Hellstrom KE. SMRP and HE4 as Biomarkers for Ovarian Carcinoma When Used Alone and in Combination with CA125 and/or Each Other. Advances in experimental medicine and biology. 2008. p. 15

