RNAi based gene therapy for HIV-1, from bench to bedside
Von Eije, K.J.

Citation for published version (APA):
Von Eije, K. J. (2009). RNAi based gene therapy for HIV-1, from bench to bedside

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction .. 1
 1.1 HIV-1 ... 2
 1.2 Current HIV-1 treatment 6
 1.3 The discovery of RNA interference 7
 1.4 Using the RNAi mechanism for therapy 8
 1.5 The basic principles of an RNAi gene therapy against HIV-1 9
 1.6 Scope of this thesis 13

2 HIV-1 escape is restricted when conserved genome sequences are targeted by RNA interference 15
 2.1 Abstract .. 15
 2.2 Introduction 16
 2.3 Materials and Methods 17
 2.4 Results ... 18
 2.4.1 Experimental design of the HIV-1 escape study 18
 2.4.2 Large-scale escape study 19
 2.4.3 Mutations in the target 23
 2.4.4 Preference for silent mutations in the targets 24
 2.4.5 Positional hotspots within the target for viral escape 25
 2.4.6 Type of disruption of the target-siRNA duplex .. . 25
 2.5 Discussion 27
 2.6 Acknowledgements 30

3 Probing the sequence space available for HIV-1 evolution 31
 3.1 Abstract .. 31
 3.2 Introduction 31
4 Early versus late viral escape upon anti-HIV-1 shRNA pressure 37
4.1 Abstract 37
4.2 Introduction 38
4.3 Materials and Methods 39
4.4 Results 40
 4.4.1 Experimental design for detection of the late HIV-1 shRNA escape variants 40
 4.4.2 Early versus late escape variants 40
 4.4.3 Late sampling reduces the number of viral escape routes for PR and Tat-Rev 40
 4.4.4 Double mutants are not the preferred escape route under RNAi pressure 42
 4.4.5 Natural variation 42
 4.4.6 The Tat-Rev overlap case 44
4.5 Conclusion 46
4.6 Acknowledgements 46

5 Stringent testing identifies highly potent and escape-proof anti-HIV shRNAs 47
5.1 Abstract 47
5.2 Introduction 48
5.3 Materials and methods 48
5.4 Results 50
 5.4.1 The set of active anti-HIV-1 shRNAs 50
 5.4.2 Transient transfection assays to score shRNA antiviral activity 51
 5.4.3 Extended culturing of HIV-1 infected shRNA cells 53
 5.4.4 Highly restricted escape pattern for the HIV-1 leader 54
 5.4.5 A transient dose-escalating HIV-1 infection assay 55
5.5 Conclusion 55
5.6 Acknowledgements 59

6 Engineering and optimization of the miR-106b-cluster for ectopic expression of multiplexed anti-HIV RNAs 61
6.1 Abstract 61
6.2 Introduction 62
6.3 Materials and methods 64
6.4 Results 68
 6.4.1 Generation of an miR-106b-based expression system 68
 6.4.2 Expression of heterologous siRNAs from the miR-106b scaffold 69
6.4.3 Removal of flanking pri-miRNA sequences abolishes siRNA functionality

6.4.4 Splicing enhances siRNA functionality in the miR-106b system

6.4.5 Strand selectivity of the S2 unit is improved by a full miR-93 mimic

6.4.6 Increased expression of si-S3 from an miR-93 mimic but neither an miR-106 nor an miR-25 mimic

6.4.7 Incorporation of U16 snoRNA-TAR-decoy hybrid RNA to increase the functionality of the MCM7 system

6.4.8 Optimized multi-cistronic expression units suppresses HIV-1 replication

6.4.9 The U16TAR-decoy enhances viral inhibition of the MCM7-S1/S2M/S3B cluster

6.5 Discussion

6.6 Acknowledgements

7 Intracellular processing of a Polymerase III transcribed RNA with multiple small interfering RNA triggers for RNA interference

7.1 Abstract

7.2 Introduction

7.3 Material and methods

7.4 Results

7.4.1 Efficacy of three anti-HIV-1 shRNAs co-expressed from a single RNA Polymerase III promoter

7.4.2 Understanding and improving the processivity of the 3shRNA vectors

7.4.3 Modifying the middle and last shRNA in more miRNA-like structures promotes nuclear export and improves target knock-down.

7.5 Discussion

7.6 Acknowledgements

8 Viral escape analysis is an effective tool to assess the selection pressure imposed by multiple inhibitors in a combinatorial RNAi therapy

8.1 Abstract

8.2 Introduction

8.3 Material and methods

8.4 Results

8.4.1 The transient dual luciferase assay shows functionality of each siRNA in the multiplexed construct.

8.4.2 Mutations in the 5' shRNA target region results in viral replication in 3shABC expressing cells.

8.5 Discussion
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samenvatting</td>
<td>171</td>
</tr>
<tr>
<td>About the author</td>
<td>173</td>
</tr>
<tr>
<td>List of Publications</td>
<td>175</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>177</td>
</tr>
</tbody>
</table>