Hierarchical resource management in grid computing
Korkhov, V.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction ... 1
 1.1 Multi-layered applications on the Grid 1
 1.2 Hierarchical structure of large-scale distributed applications 3
 1.3 Grid architecture hierarchy 4
 1.4 Problem solving environments 5
 1.5 Thesis outline ... 7

2 Resource management in Grid computing 9
 2.1 Issues of Grid resource management 9
 2.2 Dynamic and transparent workload balancing 15
 2.3 User-level scheduling 17
 2.4 Workflow management 18
 2.5 Conclusion and research motivation 20

3 Multi-layered applications on the Grid: Virtual Reactor Case Study 21
 3.1 Introduction ... 21
 3.2 Virtual Reactor problem solving environment 22
 3.2.1 Introducing Virtual Reactor 22
 3.2.2 Virtual Reactor application architecture 23
 3.2.3 Resource infrastructure: Russian-Dutch Grid testbed 27
 3.3 Adaptive workload balancing on heterogeneous resources: theoretical approach 28
 3.3.1 Resource and application parameters 28
 3.3.2 Adaptive workload balancing algorithm 29
 3.3.3 Weighting factors and workload distribution 31
 3.4 Performance of the Virtual Reactor on the Grid 33
 3.4.1 Definitions .. 33
 3.4.2 Speedup of the chemistry-disabled and chemistry-enabled simulations ... 33
 3.4.3 Computation to communication ratio 35
 3.4.4 Homogeneous resources: results and discussion 36
 3.4.5 Heterogeneous resources: results and discussion 36
 3.5 Synthetic application and experimental setup 38
 3.5.1 Load balancing speedup for different applications 39
 3.5.2 Load balancing for master-worker model: heuristic vs. analytical load distribution 40
3.6 Conclusions .. 41

4 Parallel applications in multi-cluster environment: speedup and efficiency on the Grid .. 43
 4.1 Introduction ... 43
 4.2 Speedup and efficiency ... 43
 4.3 Parallel applications on a multi-cluster 45
 4.3.1 Hierarchical decomposition of parallel applications 45
 4.3.2 Grid speedup ... 47
 4.3.3 Limitations and applicability 49
 4.4 Case study: Lattice Boltzmann Method solver on DAS-2 50
 4.4.1 Strip wise workload decomposition on a homogeneous multi-
 cluster .. 50
 4.4.2 Estimation of infrastructure parameters 52
 4.4.3 Execution time .. 52
 4.4.4 Grid speedup and efficiency 54
 4.5 Conclusions ... 58

5 User-level scheduling of multi-job applications 59
 5.1 Introduction ... 59
 5.2 Integrated adaptive workload balancing and user-level scheduling
 environment ... 60
 5.2.1 User-level scheduling features 60
 5.2.2 Executing applications in the user-level scheduling environment
 on heterogeneous resources 61
 5.2.3 Adaptive load balancing algorithm with resource selection in
 the user-level scheduling environment 63
 5.2.4 Resource pooling and selection 66
 5.3 DIANE environment for user-level scheduling 67
 5.4 Simulation results and discussion 69
 5.4.1 Adaptive workload balancing and self-scheduling comparison . 69
 5.4.2 Adaptive resource selection 71
 5.5 Conclusions ... 75

6 Data-driven Workflow Management on the Grid 77
 6.1 Introduction ... 77
 6.2 Data-driven workflows in a virtual laboratory 78
 6.3 Resource management for data-driven workflows 80
 6.3.1 Workflow modeling 80
 6.3.2 Heuristic algorithms for workflow scheduling 82
 6.3.3 Simulation results and discussion 86
 6.4 VLAM-G: interactive data driven workflow management system for
 the Grid ... 87
 6.4.1 The vision .. 87
 6.4.2 The architecture .. 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3 VLport library: design and implementation</td>
<td>93</td>
</tr>
<tr>
<td>6.4.4 Performance evaluation</td>
<td>97</td>
</tr>
<tr>
<td>6.5 Multi-layered application as a workflow</td>
<td>98</td>
</tr>
<tr>
<td>6.6 Conclusions</td>
<td>100</td>
</tr>
<tr>
<td>7 Summary and conclusions</td>
<td>101</td>
</tr>
<tr>
<td>Publications</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td>109</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>119</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>121</td>
</tr>
</tbody>
</table>