Hierarchical resource management in grid computing

Korkhov, V.V.

Citation for published version (APA):
Contents

1 Introduction 1
 1.1 Multi-layered applications on the Grid 1
 1.2 Hierarchical structure of large-scale distributed applications 3
 1.3 Grid architecture hierarchy 4
 1.4 Problem solving environments 5
 1.5 Thesis outline 7

2 Resource management in Grid computing 9
 2.1 Issues of Grid resource management 9
 2.2 Dynamic and transparent workload balancing 15
 2.3 User-level scheduling 17
 2.4 Workflow management 18
 2.5 Conclusion and research motivation 20

3 Multi-layered applications on the Grid: Virtual Reactor Case Study 21
 3.1 Introduction 21
 3.2 Virtual Reactor problem solving environment 22
 3.2.1 Introducing Virtual Reactor 22
 3.2.2 Virtual Reactor application architecture 23
 3.2.3 Resource infrastructure: Russian-Dutch Grid testbed 27
 3.3 Adaptive workload balancing on heterogeneous resources: theoretical approach 28
 3.3.1 Resource and application parameters 28
 3.3.2 Adaptive workload balancing algorithm 29
 3.3.3 Weighting factors and workload distribution 31
 3.4 Performance of the Virtual Reactor on the Grid 33
 3.4.1 Definitions 33
 3.4.2 Speedup of the chemistry-disabled and chemistry-enabled simulations 33
 3.4.3 Computation to communication ratio 35
 3.4.4 Homogeneous resources: results and discussion ... 36
 3.4.5 Heterogeneous resources: results and discussion ... 36
 3.5 Synthetic application and experimental setup 38
 3.5.1 Load balancing speedup for different applications ... 39
 3.5.2 Load balancing for master-worker model: heuristic vs. analytical load distribution 40
4 Parallel applications in multi-cluster environment: speedup and efficiency on the Grid 43
 4.1 Introduction 43
 4.2 Speedup and efficiency 43
 4.3 Parallel applications on a multi-cluster 45
 4.3.1 Hierarchical decomposition of parallel applications 45
 4.3.2 Grid speedup 47
 4.3.3 Limitations and applicability 49
 4.4 Case study: Lattice Boltzmann Method solver on DAS-2 50
 4.4.1 Strip wise workload decomposition on a homogeneous multi-cluster 50
 4.4.2 Estimation of infrastructure parameters 52
 4.4.3 Execution time 52
 4.4.4 Grid speedup and efficiency 54
 4.5 Conclusions 58

5 User-level scheduling of multi-job applications 59
 5.1 Introduction 59
 5.2 Integrated adaptive workload balancing and user-level scheduling environment 60
 5.2.1 User-level scheduling features 60
 5.2.2 Executing applications in the user-level scheduling environment on heterogeneous resources 61
 5.2.3 Adaptive load balancing algorithm with resource selection in the user-level scheduling environment 63
 5.2.4 Resource pooling and selection 66
 5.3 DIANE environment for user-level scheduling 67
 5.4 Simulation results and discussion 69
 5.4.1 Adaptive workload balancing and self-scheduling comparison 69
 5.4.2 Adaptive resource selection 71
 5.5 Conclusions 75

6 Data-driven Workflow Management on the Grid 77
 6.1 Introduction 77
 6.2 Data-driven workflows in a virtual laboratory 78
 6.3 Resource management for data-driven workflows 80
 6.3.1 Workflow modeling 80
 6.3.2 Heuristic algorithms for workflow scheduling 82
 6.3.3 Simulation results and discussion 86
 6.4 VLAM-G: interactive data driven workflow management system for the Grid 87
 6.4.1 The vision 87
 6.4.2 The architecture 88
6.4.3 VLport library: design and implementation 93
6.4.4 Performance evaluation . 97
6.5 Multi-layered application as a workflow 98
6.6 Conclusions . 100

7 Summary and conclusions 101

Publications 105

References 109

Samenvatting 119

Acknowledgements 121