All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

Abbott, R.; LIGO Scientific Collaboration; Virgo Collaboration; KAGRA Collaboration; Van Den Broeck, C.

DOI
10.1103/PhysRevD.104.102001

Publication date
2021

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

R. Abbott et al.*

(LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

(Received 30 July 2021; accepted 4 October 2021; published 11 November 2021)

After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” \(\lesssim 1\) s and “long” \(\gtrsim 1\) s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude \(h_{\text{rss}}\) as a function of waveform morphology. These \(h_{\text{rss}}\) limits improve upon the results from the second observing run by an average factor of 1.8.

DOI: 10.1103/PhysRevD.104.102001

I. INTRODUCTION

The third observing run of the Advanced LIGO [1] and Advanced Virgo [2] detectors has revealed a large number of new gravitational-wave (GW) signals from the collision of compact objects. Many binary black hole systems [3] have been identified. These include GW190521 [4] with the largest progenitor masses discovered so far, and GW190814, a merger containing an object in the “mass-gap” between neutron stars and black holes [5]. A second binary neutron star (BNS) system was also discovered, GW190425 [6], following the first BNS system GW170817 [7], which also produced GRB 170817A [8] and an optical transient, AT 2017gfo [9]. In addition, two neutron star–black hole binary coalescences (GW200105_162426 and GW200115_042309) have also been detected [10].

Searches for “long” \(\gtrsim 1\) s duration signals cover a variety of astrophysical phenomena [11]. While well-modeled compact binary coalescences can have similar durations in the sensitive band of the interferometers and the methods employed in this paper are also sensitive to them, this search is not aimed at these systems as matched filtering is much more sensitive. However, there are less well-defined waveforms for which matched filtering is not well-suited. Plausible processes include fallback accretion onto a rapidly rotating black hole [12] or in newborn neutron stars [13–15]. They also include nonaxisymmetric deformations in magnetars [16] or accretion disk instabilities and fragmentation of material spiraling into a black hole [17–19] and in the central engine of superluminous supernovae [20,21]. Figure 1 shows several different realizations of the corresponding waveform morphologies.

In this paper, we present the results of unmodeled long-duration transient searches from the third observing run, updating the results from the first two observing runs [24,25]. As in previous analyses [24–27], three pipelines are used; their different assumptions and data handling techniques yield complementary coverage of the signal models.

The paper is organized as follows. The data used in the analysis is described in Sec. II. The algorithms used to analyze the data are outlined in Sec. III. The results of the analysis and their implications are discussed in Sec. IV.

II. DATA

The third observing run (O3) of Advanced LIGO and Advanced Virgo spanned April 1, 2019–March 27, 2020. O3 was broken up into two segments, with O3a running April 1, 2019–Oct 1, 2019 and O3b running November 1, 2019–March 27, 2020; together, these correspond to 330 days. It is customary to assess detector sensitivities in terms of a binary neutron star inspiral range (BNS range), which is the average distance to which these signals could be detected [28,29]. Detector upgrades to the LIGO detectors in Hanford, WA, and Livingston, LA, yielded binary neutron star ranges of \(\sim 115\) and \(133\) Mpc, respectively, amounting to improvements of \(\sim 50\%\) with respect to
Similarly, Advanced Virgo reached a binary neutron star range of ~ 50 Mpc, a $\sim 100\%$ improvement. In the following, the algorithms employed require at least two detectors to be available to process the data; therefore, only data where both LIGO detectors are simultaneously available are used. Due to the significant difference in detector alignment and sensitivities, the Virgo data in the analysis would not improve the coincidence selection when the other two detectors are active, while the high rate of non-Gaussian noise would increase the overall false-alarm rate. We plan to include Virgo in the analysis of the next observing run.

A major challenge in searches for gravitational-wave transients is non-Gaussian noise. Known sources of noise, including nonlinear sources such as time-varying spectral lines, from, e.g., machinery on site, sidebands from the 60 Hz power lines, can be witnessed and subtracted using both linear Wiener filters [30] and machine learning techniques [31,32]. The analyses that follow use data for which some of the identified sources of noise that couple in linearly to the detector have been subtracted. Beyond spectral features, there are transient noise triggers known as glitches, which have a variety of origins [33], such as the light reflected from surfaces such as the chamber walls and scattered back into the main beam [34]. Glitch rejection procedures rely on correlations with auxiliary channels [35,36] such as seismometers and magnetometers; yet, noise transients not witnessed by auxiliary sensors remain and reduce sensitivity of the searches [37,38]. Each pipeline, described in the next section, implements different strategies to reduce the impact from glitches. Altogether, during the third observing run, coincident data of sufficient quality to be analyzed totaled 204.4 days. Since some time segments are too short to be processed by search pipelines, a small fraction ($< 2\%$) of this coincident data is not analyzed.

III. SEARCHES

Long-duration unmodeled searches are now briefly reviewed, and we refer the reader to previous publications for further detail [24,25]. Most unmodeled searches use time-frequency spectrograms with statistics derived from Fourier transforms or wavelet analysis performed on consecutive time segments. Pattern-recognition algorithms then are employed to search for gravitational waves in these spectrograms. These algorithms can be classified as “seed-based” [39,40], for which pixels above predetermined thresholds are clustered, and “seedless” [41,42], for which sequences of pixels are derived from generic models, such as Bézier curves [41–45]. Seedless clustering algorithms are sensitive to narrowband signals at the price of sensitivity to broadband sources, while seed-based algorithms are generally more sensitive to more generic waveform morphologies. These algorithms identify candidate gravitational-wave events known as triggers. To estimate...
the background, all pipelines use “time slides,” [46,47], where detector data is shifted by nonphysical time delays and reanalyzed; this procedure is repeated a sufficient number of times such that at least 50 years of coincident live time is analyzed, allowing for a false alarm rate of 1 per 50 years to be estimated.

Three pipelines are deployed in the analysis: two different versions of the Stochastic Transient Analysis Multi-detector Pipeline-all sky (STAMP-AS) pipeline [11,40,45] and the long-duration configuration of coherent Waveburst (cWB) [48]. The cWB pipeline is seed based while the two STAMP-AS algorithms, Zebragard and Lonetrack, use seed-based and seedless clustering algorithms, respectively. Altogether, the analyses are sensitive to transients lasting 2–500 s and covering a frequency band of 24–2048 Hz. Due to the short duration of binary black hole signals and the weakness of the coalescences containing neutron stars observed during O3 [6], we are not sensitive to and therefore do not excise any time around known compact binary coalescences. All false alarm rates reported are per pipeline, with no combination of searches made outside of reporting the most sensitive limit across the parameter space below.

A. STAMP-AS

Spectrograms, with duration 500 s and frequency band 24–2048 Hz and a pixel size of 1 s × 1 Hz, are derived with cross-power SNR as the statistic computed in the maps. Nonstationary, high-amplitude spectral features are masked to limit their effect on the search. Zebragard uses cuts on the fraction of SNR per time bin (summing all pixels of the same time index) and the ratio in SNR between detectors to remove data transients [24]; Lonetrack does not require this cut due to the narrowband assumption. During a short period of time, a time segment veto that flags periods of instabilities in the high-power laser at Hanford is applied on Zebragard triggers [38].

B. CWB

The algorithm used by cWB [48] is based on a maximum likelihood approach applied to the multiresolution time-frequency representation of the time series of the detectors’ data. Candidate triggers are identified as a cluster if there is a coherent excess power in the time-frequency pixel representation over the network data. The search is performed in the frequency range 24–2048 Hz. Selection criteria are applied on the duration and on the coherence of the trigger; the coherence coefficient, measuring the degree of correlation between the detectors, must be larger than 0.6 [48]. Moreover, the trigger energy-weighted duration, defined as

\[d = \sqrt{\frac{\sum w_i (t - t')^2}{\sum w_i}}, \]

where \(t \) is the central time of the pixel, \(w \) the energy of the pixel, \(t' \) the mean time and the sum is computed over the selected pixels of the event in all the resolutions, is required to be greater than 1.5 s. Since observed glitch excess in the 16–48 Hz band, associated with elevated anthropogenic noise, is different between the first and second part of the run, the acceptance criteria in the latter one have been slightly modified. The triggers have an energy-weighted duration larger than 0.5 s and a total duration greater than 5 s, this to ensure increased acceptance for the eccentric compact binary waveforms family discussed in the next section.

IV. RESULTS AND FUTURE PROSPECTS

The detection threshold is defined to be a false alarm rate lower than 1/50 years (equivalent to \(6.3 \times 10^{-10} \) Hz). None of the pipelines found triggers consistent with such a false alarm rate; the most significant triggers, nonoverlapping between the different pipelines and consistent with the background, are listed in Table I. The most significant event reported by the cWB algorithm (statistical significance \(\sim 1.7\sigma \), \(p \) value 0.088) shows a time-frequency map composed of two separated excess power cluster pixels, respectively, at 838 and 861 Hz mean frequency. This trigger appears to be associated with a random (time) coincidence of pixels belonging to two different nonstationary spectral lines of unknown origin, at 838 Hz (present in H1 and L1) and 861 Hz (present in H1). The STAMP-AS Zebragard and Lonetrack pipeline triggers are consistent with typical events identified in the background.

To place these results in context, upper limits are derived on the gravitational-wave strain amplitude using a set of simulated waveforms added coherently into detector data. Waveforms that span the parameter space in both frequency and time, as well as a sampling of potential astrophysical models, are used. For the astrophysical models, postmerger magnetars (Magnetar) [22], black hole ADI [18], newly formed magnetar powering a GRB plateau [16], ECBC waveforms [23], and broadband chirps from ISCO waves around rotating black holes [12] are used (see Ref. [49] for further developments). To include signal morphologies

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>FAR [Hz]</th>
<th>(p)</th>
<th>Frequency [Hz]</th>
<th>Duration [s]</th>
<th>Time [GPS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cWB</td>
<td>(1.0 \times 10^{-8})</td>
<td>0.088</td>
<td>838–861</td>
<td>16</td>
<td>1252808855</td>
</tr>
<tr>
<td>Zebragard</td>
<td>(5.6 \times 10^{-8})</td>
<td>0.40</td>
<td>1650–1769</td>
<td>21</td>
<td>1244819393</td>
</tr>
<tr>
<td>Lonetrack</td>
<td>(1.7 \times 10^{-8})</td>
<td>0.14</td>
<td>1510–1937</td>
<td>417</td>
<td>1253105020</td>
</tr>
</tbody>
</table>
otherwise not addressed by the astrophysical models, “ad hoc” waveforms, band-limited white noise burst and sine-Gaussian bursts are also used. Their time-frequency spectrograms are shown in Fig. 1.

The upper limits on the gravitational-wave strain amplitude are typically reported for unmodeled searches using the root-sum-square gravitational-wave amplitude at the Earth, h_{rss}.

$$h_{\text{rss}} = \sqrt{\int_{-\infty}^{\infty} (h_+^2(t) + h_x^2(t)) \, dt},$$ \hspace{1cm} (1)$$

where h_+ and h_x are the two signal polarizations. Simulations are varied with h_{rss} and injected uniformly in time, sky location, polarization angle, and the cosine of the inclination angle of the assumed source.

Upper limits on gravitational-wave strain versus mean frequency for sources detected with 50% efficiency and a false alarm rate of 1 event in 50 years are shown in Fig. 2. The strongest bounds obtained from the three pipelines are shown on the plot. Because each pipeline uses a different clustering algorithm, their relative sensitivities vary with waveform morphology. Lonetrack, which uses seedless clustering, performs best on magnetar signals (Magnetar and GRB plateau) but is not sensitive to white noise bursts. Zebragard and coherent WaveBurst give the most constraining values with similar sensitivities for most of the remaining waveforms. On average, for all waveforms considered in this paper, the h_{rss} sensitivity improved by a factor of 1.8 upon the analysis from the second observing run [25].

For the eccentric binary waveforms, we determine 90% confidence level limits on the rate of events. We do this using the “ loudest event statistic” method, which uses the candidate with the largest value to estimate rate constraints [50]. Taking as an example the eccentric binary waveforms, the 90% upper limits on the event rates as a function of distance are highlighted in Fig. 3. In addition, Table II gives the upper limits $R_{90\%}$ at 90% confidence on the rate of eccentric binary coalescences per unit volume. Following [51], and assuming an isotropic and uniform distribution of sources, $R_{90\%}$ is given by

$$R_{90\%} = \frac{2.3}{4\pi T \int_0^{r_{\text{max}}} \, dr \, e(r)},$$ \hspace{1cm} (2)$$

where $e(r)$ is the detection efficiency as a function of distance, computed as the fraction of transients detectable at a given distance [51], r_{max} is the maximum detectable distance, and $T = 204.4$ days is the total observing time. For 1.4–1.4 solar masses eccentric binaries, rate upper limits are ~1.5–2 lower than the ones computed in Ref. [52] for O2 data. Such improvement can be explained by both the increased sensitivity of the search and the increased livetime between O2 and O3. For comparison, estimated merger rates from the second LIGO-Virgo GW transient catalog [53] are $23.9^{+14.3}_{-8.6}$ Gpc$^{-3}$ yr$^{-1}$ and 340^{+490}_{-240} Gpc$^{-3}$ yr$^{-1}$ for binary black holes and binary neutron stars, respectively. With eccentric systems expected to be only a small fraction of the total binary systems, the upper limits derived are compatible with an absence of detection of such systems in this search; for this reason, we do not constrain the fraction of

FIG. 2. The GW root-sum-square strain amplitude versus mean frequency at 50% detection efficiency and a FAR of 1/50 years. The red, green, and blue curves are the averaged amplitude spectral noise densities for Hanford, Livingston, and Virgo detectors to show that the search results follow the detectors’ sensitivity frequency. We also show in dashed-dotted lines the gravitational-wave amplitudes corresponding to the energy of 0.01 M_{\odot} at various distances, with examples at 100 kpc, 1, 10, and 100 Mpc shown.

FIG. 3. Upper limits at 90% confidence level on the rate of eccentric compact binary coalescences as a function of the distance. Only the best result is shown for each waveform. The inset shows the ratio of the rates with respect to O2 results [25] for ECBC_A to ECBC_F (see Table II for parameters).
TABLE II. Rate upper limits per unit volume at 90% confidence level on eccentric compact binary coalescences with various masses and eccentricity ε, computed with Eq. (2).

<table>
<thead>
<tr>
<th>Waveform</th>
<th>$M_1 [M_\odot]$</th>
<th>$M_2 [M_\odot]$</th>
<th>ϵ</th>
<th>$R_{90%} \text{ [Gpc}^{-3} \text{yr}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECBC_A</td>
<td>1.4</td>
<td>1.4</td>
<td>0.2</td>
<td>9.97×10^2</td>
</tr>
<tr>
<td>ECBC_B</td>
<td>1.4</td>
<td>1.4</td>
<td>0.4</td>
<td>8.09×10^2</td>
</tr>
<tr>
<td>ECBC_C</td>
<td>1.4</td>
<td>1.4</td>
<td>0.6</td>
<td>3.21×10^3</td>
</tr>
<tr>
<td>ECBC_D</td>
<td>3.0</td>
<td>3.0</td>
<td>0.2</td>
<td>3.99×10^2</td>
</tr>
<tr>
<td>ECBC_E</td>
<td>3.0</td>
<td>3.0</td>
<td>0.4</td>
<td>8.89×10^2</td>
</tr>
<tr>
<td>ECBC_F</td>
<td>3.0</td>
<td>3.0</td>
<td>0.6</td>
<td>2.43×10^3</td>
</tr>
<tr>
<td>ECBC_G</td>
<td>5.0</td>
<td>5.0</td>
<td>0.2</td>
<td>1.50×10^3</td>
</tr>
<tr>
<td>ECBC_H</td>
<td>5.0</td>
<td>5.0</td>
<td>0.4</td>
<td>5.10×10^2</td>
</tr>
<tr>
<td>ECBC_I</td>
<td>5.0</td>
<td>5.0</td>
<td>0.6</td>
<td>6.98×10^2</td>
</tr>
</tbody>
</table>

eccentric binary systems, but this may become possible in the future with more sensitive detector data.

It is expected that continued improvements both to the gravitational-wave detectors and to the search algorithms, e.g., [49,54,55], will lead to either detections or improved limits on this portion of parameter space. Going forward, increasing the parameter space searched, such as for longer signals, is a high priority; these signals may include long-lived remnants of binary neutron star mergers, whose detection in gravitational waves may constrain the nature of the remnant [12,27]. In addition, integration of Advanced Virgo into the analyses will be important, especially in case of a genuine signal for characterization. With range improvements of ~50% expected for the fourth observing run and more than a factor of 2 expected by the fifth observing run [28], significant gains in detection possibilities can be expected.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidencia i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educatió i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: Grants No. JP17H06358, No. JP17H06361, and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) Grants No. 17H06133 and No. 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: Grant No. JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including Grant No. AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK.

[38] Davis et al., Classical Quantum Gravity 38, 135014 (2021).

ALL-SKY SEARCH FOR LONG-DURATION GRAVITATIONAL-WAVE EVENTS

(LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

1LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA
2Louisiana State University, Baton Rouge, Louisiana 70803, USA
3Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy
4INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
5OzGrav, School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia
6LIGO Livingston Observatory, Livingston, Louisiana 70754, USA
7University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
8OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
9Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
10Leibniz Universität Hannover, D-30167 Hannover, Germany
11Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
12University of Cambridge, Cambridge CB2 1TN, United Kingdom
13Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
14University of Birmingham, Birmingham B15 2TT, United Kingdom
15Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, Illinois 60208, USA
16Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
17Gravity Exploration Institute, Cardiff University, Cardiff CF24 3AA, United Kingdom
18INFN, Sezione di Pisa, I-56127 Pisa, Italy
19International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
20Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
21Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
22INFN Sezione di Torino, I-10125 Torino, Italy
23Università di Napoli “Federico II,” Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
24Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
25Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
26Research Center for the Early Universe (RESECU), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
27Institut de Ciéncias del Cosmos (ICCCUB), Universitat de Barcelona, C/ Martí i Franquès 1, Barcelona 08028, Spain
28Laboratoire d’Annecy de Physique des Particules (LAPP), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
29Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
30SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
31Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, I-33100 Udine, Italy
