Stochasticity in signal transduction pathways

Vidal Rodriguez, J.

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
 1.1 The Computer in Systems Biology 2
 1.1.1 The Research Cycle 3
 1.2 Models: Purpose and Focus 5
 1.2.1 Macro, Meso and Microscopic Scales 6
 1.2.2 Regimes .. 6
 1.3 Stochastic Phenomena in Bacteria 8
 1.4 Computer Methods for Stochastic Chemical Reactions 10
 1.5 Signalling Systems in Bacteria 13
 1.5.1 Two-Components Signalling Systems 15
 1.6 Objectives of this Thesis 17
 1.7 Overview of this Thesis 18

2 Gillespie Multiparticle Method 21
 2.1 Background .. 21
 2.2 Description of GMP .. 22
 2.2.1 The Operator-Split Reaction-Diffusion 22
 2.2.2 The Diffusion Process 24
 2.2.3 The Reaction Process 25
 2.2.4 Choosing a Lattice Discretisation Size 26
 2.3 Enhancements for Low Numbers of Particles 26
 2.3.1 Qualitative Computational Cost Comparison 28
 2.4 Detailed Analysis of the GMP Reaction Mechanism 30
 2.4.1 The Reversible Diffusion-Limited Reaction of a Pair of
 Molecules .. 30
 2.4.2 Effects of the Operator-split on the Distribution 32
 2.5 Discussion ... 34
 2.6 Conclusions .. 35

3 Noise and Spatial Comparisons 37
 3.1 Noise in Gene Expression 38
 3.1.1 The Model ... 39
 3.1.2 Comparison of Noise 40
 3.1.3 Reversible Pair .. 42
CONTENTS

3.1.4 Discussion ... 45

3.2 PTS in *Escherichia coli* 46
 3.2.1 The Model .. 46
 3.2.2 Results .. 48
 3.2.3 Discussion .. 50

3.3 Chemotaxis: Activation of Flagellar Motors 51
 3.3.1 The Model .. 52
 3.3.2 Results .. 54
 3.3.3 Conclusions ... 56

3.4 Conclusions ... 57

4 Response Time of TCSP 59
 4.1 The Two-Component Signalling System Model 61
 4.2 Analysis of the Individual Processes 63
 4.2.1 Scattered Sensors Reduce Response Time 63
 4.2.2 Few Transcriptions Suffice to Reduce Time Significantly 65
 4.2.3 Time to Deliver the Signal to a Promoter 65
 4.3 Analysis of the Response Time 66
 4.3.1 Modelling the Signalling Response Time 66
 4.3.2 Similar Numbers of Histidine-Kinases and Transcription Factors for an Optimal Response Time 68
 4.3.3 Correlated Numbers of HK and TF 70
 4.3.4 Assuming non-Diffusion-Limited Rates 71
 4.4 Discussion .. 72
 4.5 Conclusions .. 75

5 Processivity Effects in Gene Expression 77
 5.1 Statistical Properties of *Escherichia Coli* Gene Length 78
 5.1.1 Is *E. coli* Representative of Microbes? 79
 5.2 Modelling Expression of HK and RR 83
 5.2.1 Transcription 84
 5.2.2 Translation .. 86
 5.3 Expression Ratios and Optimality 88
 5.4 Dynamics of Translation 88
 5.5 Discussion .. 92
 5.6 Conclusions .. 94

6 Summarising discussion 95
 6.1 Future work .. 99

Summary .. 101

Samenvatting ... 103

Acknowledgements .. 105

Publications ... 109
References

Index