UvA-DARE (Digital Academic Repository)

Stochasticity in signal transduction pathways

Vidal Rodriguez, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
1.1 The Computer in Systems Biology 1
1.1.1 The Research Cycle 2
1.2 Models: Purpose and Focus 3
1.2.1 Macro, Meso and Microscopic Scales 4
1.2.2 Regimes 4
1.3 Stochastic Phenomena in Bacteria 5
1.4 Computer Methods for Stochastic Chemical Reactions .. 6
1.5 Signalling Systems in Bacteria 7
1.5.1 Two-Components Signalling Systems 8
1.6 Objectives of this Thesis 9
1.7 Overview of this Thesis 10

2 Gillespie Multiparticle Method
2.1 Background 11
2.2 Description of GMP 12
2.2.1 The Operator-Split Reaction-Diffusion 13
2.2.2 The Diffusion Process 14
2.2.3 The Reaction Process 14
2.2.4 Choosing a Lattice Discretisation Size 15
2.3 Enhancements for Low Numbers of Particles 16
2.3.1 Qualitative Computational Cost Comparison 17
2.4 Detailed Analysis of the GMP Reaction Mechanism ... 18
2.4.1 The Reversible Diffusion-Limited Reaction of a Pair of Molecules 19
2.4.2 Effects of the Operator-split on the Distribution 20
2.5 Discussion 21
2.6 Conclusions 22

3 Noise and Spatial Comparisons 23
3.1 Noise in Gene Expression 24
3.1.1 The Model 24
3.1.2 Comparison of Noise 25
3.1.3 Reversible Pair 25

