Stochasticity in signal transduction pathways

Vidal Rodriguez, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
List of Figures

1.1 Research cycle .. 5
1.2 Reductionist approach path and modelling scales 7
1.3 Regimes in cellular biochemical systems 7
1.4 Stochastic simulations for the phage λ lyssys-lysogeny 9
1.5 Simulations of MinD oscillations 10
1.6 Illustrations of the bacteria Escherichia coli 14
1.7 Architecture and information flow in a sensory network 15

2.1 2D slice representation of the spherical cell geometry 23
2.2 Illustration of the operator-split mechanism for reaction-diffusion. 23
2.3 Performance comparison of three dimensional diffusion on a lattice for a low number of particles 28
2.4 Probability distribution of first passage time in 1D for one random walker .. 31
2.5 Comparison of inter-reaction times between the split-operator method GMP .. 33

3.1 Simple model of prokaryotic gene expression 38
3.2 Comparison of fluctuations in the number of proteins 41
3.3 Comparison of the noise levels 42
3.4 Probability density function of time between subsequent bindings of an isolated pair of particles 44
3.5 Model of PTS in Escherichia coli 47
3.6 System Mass Evolution in Time (SMET) graph for the PTS pathway .. 49
3.7 Profile gradients along the radius of a 1/8th of an sphere for the PTS system .. 50
3.8 Chemotaxis model for E. coli 52
3.9 Flagelar motor occupancy in time 55

4.1 (top) Diagram of a two-component signal transduction pathway 62
4.2 Mean first-passage time to \(k \) clusters and noise \(\eta^2 \) vs. coverage fraction \(\Phi \) .. 64
4.3 Mean first-passage time to \(k \) clusters and noise \(\eta^2 \) vs. number of random walkers 66
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Response time for E. coli</td>
<td>69</td>
</tr>
<tr>
<td>4.5</td>
<td>Response time (τ_{resp}) for correlated numbers of particles</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of the signalling response time when reaction times increase</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Distribution of gene pairs for microbial two-component signal transduction pathways from MiST</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Generic representation of a dicistronic gene</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Expression ratio of a dicistronic operon</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>Expression ratio of dicistronic genes</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Dynamic evolution of the ration A/B</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of the number of completed polypeptide</td>
<td>91</td>
</tr>
<tr>
<td>6.1</td>
<td>Literature statistics for publications</td>
<td>98</td>
</tr>
</tbody>
</table>