Stochasticity in signal transduction pathways
Vidal Rodriguez, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.


REFERENCES

Bernstein, D. (2005). Simulating mesoscopic reaction-diffusion systems using the gille-

Report MAS-R0228.

Report MAS-R0020.


for Reaction-Diffusion in Biophysical Realistic Compartmentized Neuromodel. PhD
thesis.

cells at the single molecule level. *Nature*.

Cashin, P., Goldsack, L., Hall, D., and O’Toole, R. (2006). Contrasting signal trans-
duction mechanisms in bacterial and eukaryotic gene transcription. *FEMS Microbiol


based tau-leap accelerated stochastic simulation. *The Journal of Chemical Physics*,
122(2):024112.


63.

movement of single histidine kinase molecules in live caulobacter cells. *Proceedings
of the National Academy of Sciences*.


1977.

has been optimized for quick but robust response. *Submitted*. 


REFERENCES


REFERENCES


REFERENCES


REFERENCES


