Stochasticity in signal transduction pathways
Vidal Rodriguez, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


REFERENCES

Bernstein, D. (2005). Simulating mesoscopic reaction-diffusion systems using the gille-

Report MAS-R0228.

Report MAS-R0020.


for Reaction-Diffusion in Biophysical Realistic Compartmentized Neuromodel. PhD
thesis.

cells at the single molecule level. Nature.

duction mechanisms in bacterial and eukaryotic gene transcription. FEMS Microbiol

Modern Physics, 15(1):1–89.


based tau-leap accelerated stochastic simulation. The Journal of Chemical Physics,
122(2):024112.


63.

movement of single histidine kinase molecules in live caulobacter cells. Proceedings
of the National Academy of Sciences.


1977.

has been optimized for quick but robust response. Submitted.


REFERENCES


REFERENCES


REFERENCES


REFERENCES


*Trends in Microbiology*, 12(12):569–76.


of inhibitors of bacterial two-component signal transduction systems. *J Biol Chem*,
275(49):38900–4.


Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale


from concepts to nuts and bolts.


of signaling pathways – towards intracellular molecular crowding in silico. *FEBS
Letters*, pages 1783–1788.


Takahashi, K., Yugi, K., Hashimoto, K., and Yamada, Y. (2002). Computational chal-
lenes in cell simulation: A software engineering approach. *IEEE INTELLIGENT
SYSTEMS*.

Throup, J. P., Koretke, K. K., Bryant, A. P., Ingraham, K. A., Chalker, A. F., Ge,
Y., Marra, A., Wallis, N. G., Brown, J. R., Holmes, D. J., Rosenberg, M., and

transduction in prokaryotes. *Trends in Microbiology*.
REFERENCES


