Genetic regulatory networks inference: modeling, parameters estimation & model validation

Fomekong Nanfack, Y.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A hypothetical model for morphogen positional information.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Parallel vs. sequential segmentation</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Fluorescent labeling of proteins in Drosophila embryos</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Simple Representation of gene regulation</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Reverse engineering diagram</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Optimization landscape behaviour</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Fitness evolution of a (1+1)-ES minimizing a sphere model</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Fitness-based complete-migration topology</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Segmentation pattern of the adult Drosophila melanogaster</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Early development of the Drosophila melanogaster embryo</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Maternal genes along the A-P axis</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Hypothetical Gap gene network</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Stained gene expression</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Stages and time points of the gap-gene circuit</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Integrated gap gene data</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Barplot comparison of different ES settings</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>Simulation of a gene circuit</td>
<td>74</td>
</tr>
<tr>
<td>4.10</td>
<td>ES fitness landscape</td>
<td>74</td>
</tr>
<tr>
<td>4.11</td>
<td>Comparison of ESs convergence</td>
<td>75</td>
</tr>
<tr>
<td>4.12</td>
<td>ESDS landscape</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Simulated profiles of gap gene expression</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Gastrulation profile clusters</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>Dendrogram based on circuits profile</td>
<td>85</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.4</td>
<td>Correlation between different gastrulation groups</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Temporal normalized average gene expression data</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Circuits’ patterns with stable long term dynamics</td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>Circuits’ patterns with oscillating long term dynamics</td>
<td>91</td>
</tr>
<tr>
<td>5.8</td>
<td>Parameters causing different long term dynamics</td>
<td>97</td>
</tr>
<tr>
<td>6.1</td>
<td>Scatter plot of the non weights</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Scatter plot of the weights</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Parameters distribution</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Parameter correlation matrix</td>
<td>109</td>
</tr>
<tr>
<td>6.5</td>
<td>Correlation between decay and production</td>
<td>110</td>
</tr>
<tr>
<td>6.6</td>
<td>Scatter plots of parameters that regulate hb</td>
<td>112</td>
</tr>
<tr>
<td>6.7</td>
<td>Scatter plots of parameters that regulate Kr</td>
<td>113</td>
</tr>
<tr>
<td>6.8</td>
<td>Scatter plots of parameters that regulate gt</td>
<td>114</td>
</tr>
<tr>
<td>6.9</td>
<td>Scatter plots of parameters that regulate kni</td>
<td>115</td>
</tr>
<tr>
<td>6.10</td>
<td>Effect of the promoter threshold</td>
<td>117</td>
</tr>
<tr>
<td>6.11</td>
<td>Reverse engineering from synthetic data</td>
<td>118</td>
</tr>
<tr>
<td>6.12</td>
<td>Reverse engineering from synthetic noisy data</td>
<td>119</td>
</tr>
<tr>
<td>6.13</td>
<td>Scatter plot of synthetic circuits’ parameters</td>
<td>120</td>
</tr>
<tr>
<td>6.14</td>
<td>Scatter plot of synthetic circuits’ parameters weight</td>
<td>121</td>
</tr>
<tr>
<td>6.15</td>
<td>Synthetic parameter correlation matrix</td>
<td>122</td>
</tr>
<tr>
<td>7.1</td>
<td>Stochastic simulation of gene circuits</td>
<td>134</td>
</tr>
<tr>
<td>7.2</td>
<td>Phase plane comparison of gene circuit</td>
<td>135</td>
</tr>
<tr>
<td>7.3</td>
<td>Correlation between domain stochastic score and parameters</td>
<td>137</td>
</tr>
<tr>
<td>7.4</td>
<td>Stochastic domain score vs. parameters</td>
<td>138</td>
</tr>
<tr>
<td>7.5</td>
<td>Parameter perturbation</td>
<td>139</td>
</tr>
<tr>
<td>7.6</td>
<td>Distribution of sensitivity interval versus parameter value</td>
<td>141</td>
</tr>
<tr>
<td>7.7</td>
<td>The correlation pattern based on sensitivity intervals</td>
<td>142</td>
</tr>
<tr>
<td>7.8</td>
<td>Intensity plot of the SI</td>
<td>143</td>
</tr>
<tr>
<td>7.9</td>
<td>SI vs. parameter standard deviation</td>
<td>143</td>
</tr>
<tr>
<td>7.10</td>
<td>Scatter plot of pattern scores versus average circuit sensitivity</td>
<td>145</td>
</tr>
<tr>
<td>7.11</td>
<td>Stochastic domain score vs. parameters sensitivity</td>
<td>146</td>
</tr>
</tbody>
</table>