Genetic regulatory networks inference: modeling, parameters estimation & model validation

Fomekong Nanfack, Y.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE (Digital Academic Repository)
List of Figures

1.1 A hypothetical model for morphogen positional information . . 3
1.2 Parallel vs. sequential segmentation . . . . . . . . . . . . 5
1.3 Fluorescent labeling of proteins in Drosophila embryos . . . 7
1.4 Simple Representation of gene regulation . . . . . . . . . . 8
1.5 Reverse engineering diagram . . . . . . . . . . . . . . . . . 11

2.1 Optimization landscape behaviour . . . . . . . . . . . . . . . 24

3.1 Fitness evolution of a (1+1)-ES minimizing a sphere model . . 45
3.2 Fitness-based complete-migration topology . . . . . . . . . . 49

4.1 Segmentation pattern of the adult Drosophila melanogaster . . 56
4.2 Early development of the Drosophila melanogaster embryo . . 57
4.3 Maternal genes along the A-P axis . . . . . . . . . . . . . . . 58
4.4 Hypothetical Gap gene network . . . . . . . . . . . . . . . . 59
4.5 Stained gene expression . . . . . . . . . . . . . . . . . . . . . 62
4.6 Stages and time points of the gap-gene circuit . . . . . . . . . 63
4.7 Integrated gap gene data . . . . . . . . . . . . . . . . . . . . 65
4.8 Barplot comparison of different ES settings . . . . . . . . . . 72
4.9 Simulation of a gene circuit . . . . . . . . . . . . . . . . . . 74
4.10 ES fitness landscape . . . . . . . . . . . . . . . . . . . . . . 74
4.11 Comparison of ESs convergence . . . . . . . . . . . . . . . 75
4.12 ESDS landscape . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Simulated profiles of gap gene expression . . . . . . . . . . . 81
5.2 Gastrulation profile clusters . . . . . . . . . . . . . . . . . . 84
5.3 Dendrogram based on circuits profile . . . . . . . . . . . . . 85
5.4 Correlation between different gastrulation groups ........ 87
5.5 Temporal normalized average gene expression data .......... 88
5.6 Circuits’ patterns with stable long term dynamics ......... 90
5.7 Circuits’ patterns with oscillating long term dynamics .... 91
5.8 Parameters causing different long term dynamics ......... 97

6.1 Scatter plot of the non weights .......................... 103
6.2 Scatter plot of the weights ................................ 104
6.3 Parameters distribution ................................. 105
6.4 Parameter correlation matrix ............................ 109
6.5 Correlation between decay and production ................. 110
6.6 Scatter plots of parameters that regulate $hb$ ............ 112
6.7 Scatter plots of parameters that regulate $Kr$ ............ 113
6.8 Scatter plots of parameters that regulate $gt$ ............ 114
6.9 Scatter plots of parameters that regulate $kni$ ........... 115
6.10 Effect of the promoter threshold ........................ 117
6.11 Reverse engineering from synthetic data .................. 118
6.12 Reverse engineering from synthetic noisy data .......... 119
6.13 Scatter plot of synthetic circuits’ parameters ........... 120
6.14 Scatter plot of synthetic circuits’ parameters weight .... 121
6.15 Synthetic parameter correlation matrix .................. 122

7.1 Stochastic simulation of gene circuits ...................... 134
7.2 Phase plane comparison of gene circuit .................... 135
7.3 Correlation between domain stochastic score and parameters 137
7.4 Stochastic domain score vs. parameters ................... 138
7.5 Parameter perturbation .................................. 139
7.6 Distribution of sensitivity interval versus parameter value 141
7.7 The correlation pattern based on sensitivity intervals .... 142
7.8 Intensity plot of the SI ................................ 143
7.9 SI vs. parameter standard deviation ........................ 143
7.10 Scatter plot of pattern scores versus average circuit sensitivity 145
7.11 Stochastic domain score vs. parameters sensitivity .... 146