Comparability of results from two leakage models

Erick Miranda Souza, MSc, Min-Kai Wu, MD, MSD, PhD, Hagay Shemesh, DMD, Idomeo Bonetti-Filho, PhD, and Paul R. Wesselink, DDS, PhD, São Paulo, Brazil and Amsterdam, The Netherlands
SÃO PAULO STATE UNIVERSITY AND ACADEMIC CENTRE FOR DENTISTRY AMSTERDAM

Objective. The goal of this study was to check whether leakage results of the same specimens measured by 2 different leakage models are similar.

Study design. Canine root canals were prepared and filled with cold gutta-percha cones and 1 of 4 sealers (20 canals for each sealer). The 80 specimens were first connected to a fluid transport model where air-bubble movement was measured. The same specimens were later connected to a glucose penetration model where the concentration of glucose was measured. In both models, a headspace pressure of 30 kPa was used to accelerate leakage.

Results. In both models, 4 sealers ranked the same regarding the leakage they allowed, and a significant correlation between the results of the 2 models was confined (Spearman test coefficient = 0.65; \(P = .000001 \)).

Conclusion. Under the conditions of this study, leakage results of 80 specimens recorded in the fluid transport model and glucose penetration model were similar. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:309-13)

To achieve periapical healing, root fillings should prevent coronal reinfection and entomb remaining bacteria. In a study by Felippe et al., roots of dogs’ teeth and periapical tissues were examined histologically 5 months after different endodontic treatments. Prepared but unfilled canals were associated with severe chronic periapical inflammatory reaction and severe bone and root resorption.

Defective root fillings, which provide pathways for bacteria and toxins to the periphery, are not always identified with 2-dimensional radiographs. A recent treatment outcome study reported reduced success rates when the root filling contained radiographically detectable voids (poor root filling density or dark lines along the filling). Therefore, root fillings should present as few voids as possible, and, once present, voids should be as narrow as possible.

Different leakage models, including fluid transport and glucose penetration, have been used in vitro to determine the presence of voids along the root filling. Because new materials are continuously developing, so is the need for assessing their sealing ability. Results of different in vitro leakage tests are used to rank various materials. However, it has rarely been studied whether the results of the same specimens recorded in different leakage models are similar.

The purpose of the present study was to investigate the comparability of leakage results of the same specimens recorded in the fluid transport model and glucose penetration model.

MATERIALS AND METHODS

One hundred recently extracted maxillary and mandibular canines were selected, and proximal radiographs were taken to confirm the presence of a single canal. The coronal parts were removed, leaving roots 15 mm in length.

Instrumentation

Canals were prepared with K-files #15 to #50 (Dentsply Maillefer, Ballaigues, Switzerland) to 1 mm short of the apical foramen. This enlargement was chosen following the recommendations of Tronstad. A step-back flaring technique was performed at 2-mm increments with Gates-Glidden burs #2 to #6. File #50 was used to smooth the irregularities left by this flaring regimen. Canals were rinsed between each instrument with 2 mL 2% NaOCl solution. One minute of passive ultrasonic irrigation was performed using a #15 Endosonore file (Dentsply Maillefer). Because the apical
diameter of canines could be larger than 0.2 mm, a K-file #30 was used to verify patency and assure that the apical foramen was not smaller than #30. Canals were rinsed with NaOCl and dried using paper points. Roots were randomly divided into 4 experimental groups (20 each) according to the sealers tested—AH26 (Dentsply Detrey, Konstanz, Germany), AH Plus (Dentsply Detrey), RSA (Roeko Dental Products, Langenau, Germany), an experimental castor oil polymer (Polifil; Poliquil Araraquara Polímeros Químicos, Araraquara, Brazil)—and 2 control groups (10 each).

Obturation
Polifil is commercially available and consists of a paste (polyester), liquid (biphenyl methane isocyanate), and zinc oxide. The manufacturer’s instructions were followed and 2.5 g of supplied zinc oxide was mixed with 1.0 g of paste and inserted into a plastic syringe. This was then mixed with the liquid in a 3:1 ratio on a glass plate. The other 3 sealers were also prepared following manufacturer’s recommendations.

Sealers were introduced into the canal twice, 5 s each, using a bidirectional spiral #25 (EDS, Hackensack, NJ). A gutta-percha cone #50 (Henry Schein, Mexico City, Mexico), coated with sealer, was placed into the canal followed by 2 accessory cones #25 placed to a depth where resistance was met. No spreader was used.

Eleven millimeters of the coronal gutta-percha was removed immediately after obturation with a heated plugger, leaving the apical 4 mm to be subjected to the leakage tests.

In the positive control group, lateral compaction of gutta-percha was performed without sealer. Negative controls were filled with 3 gutta-percha cones and AH26, and the external root surface was completely covered with cyanoacrylate.

To facilitate the leakage setting up, the coronal 8 mm of each specimen was embedded in acrylic resin to form a cylinder around the root. Specimens were then stored for 1 month at 37°C and 100% humidity for sealers’ setting.

Fluid transport
Roots were mounted on a fluid transport model previously described and shown in Fig. 1, A. A 30-kPa (360 cm H2O) headspace pressure was applied, and after 3 h, 6 h, and 24 h, the air bubble movement (in μL) in the capillary tube (Fig. 1, A) was recorded.

Glucose penetration
Twenty-four hours after finishing fluid transport readings, samples were mounted on a glucose penetration model (Fig. 1, B), where glucose solution was placed in the coronal reservoir. A headspace pressure of 30 kPa was created by connecting the open orifice of the pipette to a pressure source (Fig. 1, B). After 24 h, a sample of 100 μL was taken from the apical reservoir and the glucose concentration was measured.

The samples were analyzed using a Glucose kit (Megazyme, Wicklow, Ireland) in a spectrophotometer (Spectra Max 384 Plus; Molecular Devices, Sunnyvale, CA) at a wavelength of 340 nm. Glucose concentrations were presented in mg/mL.
Kruskal-Wallis and Mann-Whitney tests checked differences among the 4 sealer groups and Spearman test verified the correlation between the results of two models (SPSS, version 12.0.1; Chicago, IL). Chi-squared test detected differences in the number of leaking samples demonstrated by the fluid transport model at different time intervals (Sigma Stat, version 3.1; San Jose, CA).

RESULTS

In the fluid transport test, no movement of the air bubble was detected in the negative controls. All positive controls showed bubble movement that exceeded the pipette length within 3 h. In the glucose penetration test, no glucose penetration was detected in the negative controls. In all positive controls, glucose penetrated completely to the apical reservoir within 24 h.

Tables I and II show the results of the experimental groups. After 24 h, in both models, RSA showed the best sealing, and AH Plus leaked the most ($P < 0.01$); no significant difference between RSA and Polifil was observed ($P = 0.15$, fluid transport; $P = 0.89$, glucose penetration).

When the fluid transport model was used, significantly more leaking samples were detected after 24 h than after 3 h or 6 h (Table II; $P < 0.01$).

A positive correlation was observed between the results of both models (Fig. 2; coefficient $= 0.65$; $P = 0.000001$).

DISCUSSION

In the original glucose model, the headspace pressure was 15 cm of glucose solution. In the present study a higher headspace pressure of 30 kPa (360 cm H$_2$O), was applied to accelerate glucose penetration and create conditions comparable to those for the fluid transport. Thus, water or glucose solution that moved to the apical chamber under the same headspace pressure was quantified. In fluid transport, air-bubble movement was measured to indicate the volume of water penetration; in glucose penetration, the concentration of glucose in the apical chamber was measured to indicate the volume of glucose solution movement.

Fluid transport and glucose penetration occur only through voids that are completely open, while cul-de-sac type voids prevent fluid transport or glucose penetration. It has been shown that neither water nor glucose solution penetrate through root dentin. Thus, evidence of fluid transport or glucose penetration indicates that the total volume of the voids is bigger.

In this study, 24 h after fluid transport the specimens were connected to the glucose model, where the concentration of glucose was measured. When the same specimens are tested by 2 models, similarity of the results could be considered to be a measure of the models’ reliability. However, one may argue that running the specimens through the fluid transport system under 30 kPa pressure had changed the property of the filling and affected the results of glucose penetration. In a study by Wu et al., the amount of fluid transport along

<table>
<thead>
<tr>
<th>Sealer</th>
<th>Fluid transport (µL)</th>
<th>Glucose concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 h</td>
<td>6 h</td>
</tr>
<tr>
<td>AH26 (n = 20)</td>
<td>Median (range) 0 (0-1) 0 (0-2) 0 (0-4)</td>
<td>0.01 (0-1.2)</td>
</tr>
<tr>
<td></td>
<td>Mean (SD) 0.2 (0.41) 0.25 (0.55) 0.85 (1.73)</td>
<td>0.10 (0.30)</td>
</tr>
<tr>
<td>RSA (n = 20)</td>
<td>Median (range) 0 (0-0) 0 (0-0) 0 (0-1)</td>
<td>0 (0-0.05)</td>
</tr>
<tr>
<td></td>
<td>Mean (SD) 0 (0) 0 (0) 0.05 (0.22)</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>AH Plus (n = 20)</td>
<td>Median (range) 0 (0-1) 0 (0-2) 1 (0-4)</td>
<td>0.02 (0-1.3)</td>
</tr>
<tr>
<td></td>
<td>Mean (SD) 0.2 (0.41) 0.35 (0.67) 1.20 (1.20)</td>
<td>0.23 (0.43)</td>
</tr>
<tr>
<td>Polifil (n = 20)</td>
<td>Median (range) 0 (0-0) 0 (0-0) 0 (0-2)</td>
<td>0 (0-0.1)</td>
</tr>
<tr>
<td></td>
<td>Mean (SD) 0 (0) 0 (0) 0.25 (0.55)</td>
<td>0.02 (0.03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sealer</th>
<th>Number of leaking samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 h 6 h 24 h</td>
</tr>
<tr>
<td>AH26 (n = 20)</td>
<td>4 4 8</td>
</tr>
<tr>
<td>RSA (n = 20)</td>
<td>0 0 1</td>
</tr>
<tr>
<td>AH Plus (n = 20)</td>
<td>4 5 14</td>
</tr>
<tr>
<td>Polifil (n = 20)</td>
<td>0 0 3</td>
</tr>
<tr>
<td>Total (n = 80)</td>
<td>8 9 26</td>
</tr>
</tbody>
</table>
the same root fillings was examined. Fluid transport under headspace pressure of 60 kPa was measured every 2 h. All specimens filled by lateral compaction, vertical compaction, and single cone showed consistent values, indicating that the 60 kPa headspace pressure did not result in detectable damage to the root fillings.

In earlier studies where fluid transport was measured, the headspace pressure was applied for a certain period of time from a few minutes to 24 h. To investigate whether the time of fluid transport plays a role in detection of leaking samples, fluid transport was recorded also after 3 h and 6 h. Significantly more leaking samples were detected after 24 h than after 3 h and 6 h (Table II). Presumably, samples presented with narrow voids required longer pressure time to display detectable fluid accumulation in the apical reservoir. This is supported by the observation that only 1 to 2 μL of fluid transport was recorded after 24 h (Table I).

The purpose of this study was to examine whether the same root fillings displayed a similar amount of leakage in 2 different leakage models, not to test specific root filling techniques. Only 3 gutta-percha cones were used to fill each canal to simplify the procedure. Spreader was not used because of the difficulty to standardize the spreader load and the number and size of spreader tracks. Furthermore, using no spreader may prevent root fracture.

AH Plus is considered to be a new generation of AH26, having a faster setting time. The accelerated setting time may cause shrinkage stress, leading to debonding of sealer from the root canal wall. In addition, silicon oils present in the sealer have been claimed to affect its sealing properties. In accordance with other studies, RSA sealer displayed effective sealing, which may be due to its slight expansion during setting and close adaptation to dentinal walls. Polifil is a polyurethane (polyester) mixed with zinc oxide. According to our results, Polifil may become a promising endodontic sealer. Similar tissue response has been observed to Polifil and to calcium hydroxide sealer.

Fig. 2. Correlation between the 24 h results of 80 specimens recorded in 2 models (coefficient = 0.65; P = .000001).
Under the conditions in this study, results of the same specimens recorded in the fluid transport model and glucose penetration model were similar.

REFERENCES

Reprint requests:
Dr. Min-Kai Wu
Department of Cariology, Endodontontology, and Pedodontontology
Academic Centre for Dentistry Amsterdam (ACTA)
Louwesweg 1
1066 EA Amsterdam
The Netherlands
m.wu@acta.nl