New insights into the root canal wall
Shemesh, H.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The effects of canal preparation and filling on the incidence of dentinal defects

H. Shemesh1, C. A. S. Bier2, M.-K. Wu1, M. Tanomaru-Filho2 & P. R. Wesselink1

1Department of Cariology, Endodontology, Pedodontontology, Academic Centre of Dentistry Amsterdam, Amsterdam, The Netherlands; and 2Department of Restorative Dentistry, Araraquara Dental School, São Paulo State University, UNESP, Araraquara, SP, Brazil

Abstract

Aim To evaluate ex vivo the incidence of defects in root dentine before and after root canal preparation and filling.

Methodology Eighty extracted mandibular premolars were divided equally in four groups. Group 1 was left unprepared. All other root canals were prepared using Gates Glidden drills and System GT files up to size-40, 0.06 taper at the working length. Group 2 was not filled while the canals of the other groups were filled with gutta-percha and AH26, either with a master cone and passive insertion of secondary gutta percha points (group 3) or lateral compaction (group 4). Roots were then sectioned horizontally 3, 6, and 9 mm from the apex and observed under a microscope. The presence of dentinal defects (fractures, craze lines or incomplete cracks) was noted and the differences between the groups were analysed with the Fisher’s exact test.

Results No defects were observed in the roots with unprepared canals. The overall difference between the groups was significant (P < 0.05). Canal preparation alone created significantly more defects than unprepared canals (P < 0.05). The total number of defects after lateral compaction was significantly larger than after noncompaction canal filling.

Conclusion Root canal preparation and filling of extracted teeth created dentine defects such as fractures, craze lines and incomplete cracks.

Keywords: craze lines, dentine, obturation, preparation, vertical root fracture.

Received 12 August 2008; accepted 14 October 2008

Introduction

Vertical root fracture (VRF) is a clinical complication that may be associated with root canal treatment and lead to extraction (Tamse et al. 1999). Endodontic procedures might contribute to the development of VRF as well as other localized defects such as craze lines or incomplete cracks in root dentine (Onnink et al. 1994, Sathorn et al. 2005). These localized defects may have the potential to develop into fractures (Wilcox et al. 1997, Shemesh et al. 2008) and should therefore be prevented. Several factors may be responsible for the formation of dentinal defects: instrumentation and root filling (Onnink et al. 1994), high concentration of hypochlorite (Sim et al. 2001), tooth anatomy (Wu et al. 2004) and post-placement (Kishen 2006).

Lateral compaction of gutta-percha is widely used to fill the root canal system and was reported previously to be associated with an increased risk of VRF (Meister et al. 1980, Wilcox et al. 1997). Spreader design and applied forces were suggested as contributing factors to the appearance of VRF during lateral compaction (Pitts et al. 1983, Dang & Walton 1989). However, laboratory stress distribution studies consistently conclude that the pressure applied during lateral compaction is insufficient to cause VRF (Dalat & Spångberg 1994,
Thus, it remains unclear whether lateral compaction can cause VRF. As an alternative, several techniques where no compaction forces are used have been proposed and shown to produce an apical seal similar to that of lateral compaction when used in conjunction with dimensionally stable sealers (Dalat & Spa˚ngberg 1994, Tidswell et al. 1994, Ozok et al. 2008).

The purpose of this study was to compare the incidence of fractures and other dentinal defects before and after canal preparation and filling either with lateral compaction of gutta-percha or a technique where no compaction forces were used.

Materials and methods
Eighty extracted mandibular premolar teeth were selected and stored in purified filtered water. Proximal radiographs were taken to verify the presence of a single canal. The clinical crowns of all teeth were removed using an Isomet 11-1180 low-speed saw (Buehler Ltd, Evanston, IL, USA), leaving roots approximately 16 mm in length. All roots were observed under 8· magnifications in a stereomicroscope (Zeiss Stemi SV6; Carl Zeiss, Jena, Germany) to exclude cracks. Twenty root canals were left unprepared (group 1) and the remaining 60 teeth (groups 2, 3 and 4) were subjected to the procedures described below. All roots were kept moist in purified filtered water throughout the experimental procedures in order to prevent dehydration.

Cleaning and shaping
Canal patency was established with a size-20 K-Flexo File (Dentsply Maillefer, Ballaigues, Switzerland). The canal opening was enlarged with Gates Glidden drills 3 (size-90) and 4 (size-110) to a depth of 4 and 3 mm from the coronal orifice respectively. Canal preparation followed with System GT rotary files (Dentsply Maillefer) and a torque-control motor (Technika, Pistoia, Italy) at 300 rpm using the crown-down technique with series 40 and 30 files, ending with a size-40, 0.06 taper instrument to 1 mm short of the apical foramen. Each canal was irrigated with a freshly prepared 2% solution of sodium hypochlorite (NaOCl) between each instrument, using a syringe and a 27-gauge needle. Twelve millilitres of NaOCl solution was used for each root canal. After completion of instrumentation, passive ultrasonic irrigation was performed using an ultrasonic file size-15 (Satelec, Merignac Cedex, France) in order to activate the irrigation solution and clean the canals (van der Sluis et al. 2007). After completion of the procedure, canals were rinsed with 2 mL distilled water. The prepared roots were divided into three experimental groups of 20 roots each (groups 2, 3, and 4). Group 2 remained without root filling. Group 3 and 4 were filled with gutta-percha and AH26, using two different techniques according to the protocol described below.

Canal filling
Canals were dried using paper point size-40. AH 26 (Dentsply De trey, Konstanz, Germany) was mixed according to the manufacturer’s instructions and introduced into the canal on two occasions, using a lentulo spiral, for 5 s each (Hall et al. 1996) rotating at 400 rpm to 1 mm short of the working length. Standardized size-40 gutta-percha cones (Henry Schein, Mexico City, Mexico), with a 0.02 taper, were coated with sealer, and placed into the root canal to the working length. In group 3, two additional size-25 cones were placed to a depth where resistance was met without use of a spreader (Souza et al. 2008). Group 4 was sealed with the lateral compaction technique using a size C spreader (D1 diameter 0.3 mm, 0.04 taper) (Dentsply Maillefer) and size-25 standardized gutta-percha cones. The force applied to the spreader was controlled using a digital scale and kept at a maximum of 2 kg. A polyether impression material (President, Coltene, Alostäten, Switzerland) was used around the tooth during the filling procedures in order to mimic the mechanisms of stress distribution. The coronal gutta-percha was removed with a flame-heated plugger (0.5-mm diameter, Dentsply Maillefer), and the impression material was removed. Roots were stored for 1 week at 37 °C and 100% humidity to allow the sealers to set.

Examination of roots
All roots were sectioned horizontally at 3, 6 and 9 mm from the apex with a low-speed saw under water cooling (Leica SP1600, Wetzlar, Germany). Slices were then viewed through a stereomicroscope (Zeiss Stemi SV6; Carl Zeiss) using a cold light source (KL 2500 LCD; Carl Zeiss). Pictures were taken with a camera (Axio cam; Carl Zeiss) at a magnification of X12. The dentine was inspected and defects were noted. Defects were categorized as: ‘no defect’, ‘fracture’ and ‘all other defects’ (Fig. 1). ‘No defect’ was defined as root dentine...
devoid of any lines or cracks where both the external surface of the root and the internal root canal wall had no defects (Fig. 1a). ‘Fracture’ was defined as a line extending from the root canal space to the outer surface of the root (Wilcox et al. 1997) (Fig. 1b). ‘Other defects’ were defined as all other lines observed that did not extend from the root canal to the outer root surface. For example, a craze line – line extending from the outer surface into the dentine that did not reach the canal lumen (Wilcox et al. 1997) (Fig. 1.C1), or a partial crack extending from the canal wall into the dentine without reaching the outer surface of the root (Fig. 1.C2).

Statistical analysis
Fisher’s exact test was performed to compare the incidence of fractures and other defects between the four groups using the SPSS/PC version 15 (SPSS Inc., Chicago, IL, USA). The level of significance was set at $\alpha = 0.05$.

Results
Figures 2 and 3 summarize the results. The groups were significantly different from each other ($P < 0.05$). The unprepared canals (group 1) had no defects. When considering the overall appearance of defects, the lateral compaction group (group 4) demonstrated significantly more defects than all other groups ($P < 0.05$), while roots with prepared canals (group 2) had significantly more defects than teeth with unprepared canals (group 1) ($P < 0.05$). When considering only fractures, the lateral compaction (group 4) had significantly more defects than the unprepared group (group 1) ($P < 0.05$) but not significantly more than the canal preparation-only group (group 2) ($P > 0.05$).
Discussion

The sectioning method used in the current study allowed the evaluation of the effect of root canal treatment procedures on the root dentine by direct inspection of the root canal wall, observing not only VRF but also dentinal defects such as craze lines and incomplete cracks. When considering all the defects, the lateral compaction group had significantly more defects than all other groups ($P < 0.05$). Although no definitive conclusion can be made of the clinical consequences of the dentinal defects developed under these ex vivo experimental conditions, these findings may contribute to the understanding of long-term clinical observations (Meister et al. 1980, Tamse et al. 1999) that ex vivo methods often could not clarify. It may be hypothesized that craze lines and incomplete cracks might propagate and develop into fractures after completion of endodontic procedures, following additional treatments such as post-space preparation or retreatment (Wilcox et al. 1997), or simply by forces transferred to the root during masticatory function and occlusal loading (Assif et al. 2003).

Previous ex vivo experiments studying the influence of endodontic procedures on root dentine mainly used one or other of the following methodologies: resistance to fracture, stress distribution measurements or observations of the presence of defects in tooth sections (Obermayr et al. 1991, Onnink et al. 1994, Saw & Messer 1995, Wilcox et al. 1997, Lertchirakarn et al. 1999, Mayhew et al. 2000, Ribeiro et al. 2008).

Resistance to fracture is frequently measured to assess the weakening of the root after different procedures. This method differs from the one used in the current study in that it applies an external force until the root fractures (Ribeiro et al. 2008), while in the current experiment, the influence of various procedures on the root canal walls was directly observed and no external forces were applied. Furthermore, resistance to fracture provides no information on the incidence of dentinal defects other than VRF.

Stress distribution studies record stress transmission to dentine during different procedures using strain gauges (Obermayr et al. 1991, Saw & Messer 1995, Lertchirakarn et al. 1999), or a photoelastic material (Mayhew et al. 2000). These studies have shown that the force needed to fracture a root is much higher than that formed during lateral compaction. The current study found relatively few VRF in all groups, confirming this conclusion.

The observation that many of the defects did not connect with the pulp space, and were located in places away from direct contact with intra-canal instruments is baffling. Wilcox et al. (1997) speculated that the stresses generated from inside the root canal are transmitted through the root to the surface where they overcome the bonds holding the dentine together. In the current study, craze lines were not seen in unprepared teeth proving that they were caused by the preparation and filling procedures. Onnink et al. (1994) claimed that a fracture contained within the dentine in one section could communicate with the canal space in an adjacent section. This supposition was recently supported by nondestructive observations of VRF induced in extracted teeth and viewed with optical coherence tomography (Shemesh et al. 2008).
In a series of scans depicting a dentinal defect in one root, an incomplete crack is shown to originate at the root canal wall but later propagates into dentine, demonstrating no communication with the root canal lumen at subsequent sections. In another recent publication, Soros et al. (2008) claimed that VRF is mainly a matter of crack propagation and should not be considered as an instant phenomenon.

In the current experiment, the roots were surrounded with an impression material during filling in an attempt to mimic the bony socket that may change the force distribution around the tooth when external forces are used, namely lateral compaction (Lertchirakarn et al. 1999). However, the clinical situation is more complex because of the presence of the periodontal ligament that could further influence the distribution of forces. While some studies did not attempt to imitate bone or periodontal ligament (Omnink et al. 1994, Ribeiro et al. 2008), others have made various attempts to do so. For example, Wilcox et al. (1997) used a single layer of aluminium foil and then embedded the teeth in acrylic resin, while Lertchirakarn et al. (1999) covered the roots with silicone paste. However, it seems that these attempts are insufficient to mimic the anatomical and biological aspects of tooth structure (Saw & Messer 1995) and could contribute to the introduction of artificial changes in force distribution themselves. Soros et al. (2008) stated that elastomeric materials are incapable of withstanding compaction forces in the way that the natural ligament does and that they may collapse under pressure. In agreement with the current findings, they highlight the significance of crack initiation and propagation in the evaluation of VRF formation rather than the actual appearance of a VRF as a result of a specific stress application.

The forces of extraction may also contribute to the observation of incomplete fractures. However, since most of the premolars selected had calculus and staining but no deep carious lesions, an assumption could be made that they were extracted for periodontal reasons with minimal trauma (Omnink et al. 1994). This is further confirmed by the finding that unprepared root canals had no defects. The Storage medium used to keep the teeth was purified filtered water. This medium was previously recommended for investigations of human dentine (Strawn et al. 1996) as it causes the smallest changes in dentine over time.

System GT instruments have lands, a U-shaped cross section and a noncutting tip. The lands make the instruments passive and prevent canal transportation (Schirrmeister et al. 2006). This design increases the contact area with the canal wall as compared to cutting instruments devoid of lands such as the ProTaper system, and might increase friction and torque and thereby fracture risk (Blum et al. 1999). This may explain the significantly larger number of defects in the preparation-only group (Fig. 2). It will be interesting to study whether similar defects will be present after preparation with instruments having different designs. Furthermore, Gates Glidden drills were used during the preparation procedure, as they were shown to improve working-safety, avoiding apical transportation and reducing working time (Bergmans et al. 2002). They, too, might be a contributing factor to the formation of root defects during preparation, through the action of the burs on dentine, and the excess removal of root structure resulting in weakening of the root (Pilo et al. 1998, Kuttler et al. 2004).

Little is known on the effects of ultrasonic irrigation on the root canal walls. Further studies should be conducted on the effect of these instruments on root dentine.

Conclusion

Under the conditions of this ex vivo study, the use of System GT rotary files and Gates Glidden drills to prepare canals resulted in dentinal defects. The use of a passive compaction technique to fill the canals of extracted teeth significantly reduced the incidence of defects compared to lateral compaction. Clinicians should be aware of the potential damage risks during canal enlargement, preparation and some root filling procedures.

Acknowledgements

Carlos Alexandre Souza Bier was supported by the Brazilian Agency Capes, Grants No. 2094/07. The authors wish to thank Irene H.A. Aartman from the Department of Social Dentistry and Behavioral Sciences, ACTA, Amsterdam, the Netherlands for her help with the statistical interpretation of the results.

References