Solanoeclepin A
Characterization of a rhizosphere communication molecule in tomato and potato
Guerrieri, A.

Publication date
2022

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Summary
In Chapter 1 of my thesis, I introduce the concept of the soil ecosystem and its importance for agriculture. I explain how plants shape their rhizosphere using signaling molecules secreted by their roots, focusing the attention on different types of interactions between plants and the surrounding organisms including microbes, fungi, nematodes and other plants. Both beneficial and harmful types of interactions are explained, including symbiotic relationships, allelopathy and tritrophic interactions. I give special attention to the plant-nematode interaction, introducing the life cycle of plant parasitic nematodes and introducing the concept of eclepins. Eclepins are triterpenoid molecules secreted into the rhizosphere, which induce hatching in parasitic cyst nematodes such as potato cyst nematodes (PCNs). The most active PCN hatching factor is Solanoelepin A (SolA) found in potato and tomato root exudate. The presence of such molecules in the rhizosphere opens the possibility of exploitation of these signaling cues to improve agriculture, but the function of the majority of molecules in the root exudate is still unknown.

The role of SolA as PCN hatching factor has been studied since 1949 when its molecular structure was not identified yet and it was referred to as ‘potato cyst nematode hatching factor’. Since the discovery of the SolA structure in 1996, studies of this molecule have been mostly focused on its chemical synthesis and the interaction with PCNs. Since the beneficial function of SolA in the rhizosphere has not been clarified yet, and its study is hindered by the low concentration in the root exudates, in Chapter 2 I describe an efficient analytical method to detect SolA in root exudates with a single-step extraction and UPLC-MS/MS analysis. I used the method to detect SolA in different wild tomato relatives and accessions including the trap crop Solanum sisymbriifolium and demonstrated there is quite some variation in the level of SolA produced by different genotypes. Using hatching assays with PCN Globodera pallida, I demonstrate a positive correlation between the SolA concentration in the root exudate and the hatching rate.

The detection of SolA in wild tomato relatives in Chapter 2, prompted me to screen a collection of 340 wild potato relatives belonging to the Petota section for their SolA production in Chapter 3. I found a range of species producing SolA, but also a large number that did not. Even within the same species there was variation between accessions that produce SolA and others that do not. Hatching assays with G. pallida showed that some of the accessions that do not produce SolA still induce PCN hatching hinting at the presence of other hatching factors (HFs) or hatching stimulants (HSs) like SolA. To investigate the nature of these new signaling molecules, fractionation of a selection of root exudates was performed and hatching of the different fractions was assessed. Also, this suggests that other HFs are present in the root exudates with a potential hatching activity higher than SolA. Interestingly, Globodera rostochiensis showed quite a different response to these wild potato root exudates than G. pallida, suggesting that the two Globodera species have different sensitivity to the same HFs or inhibitors.

To be able to characterize SolA biosynthetic gene candidates, in Chapter 4 I developed systemic Virus Induced Gene Silencing (VIGS) to silence genes involved in terpenoid pathways expressed in the roots. As model candidate genes, I used STEROL
METHYLTRANSFERASE (SMT1) and STEROL SIDE CHAIN REDUCTASE 2 (SSR2) involved in the biosynthesis of phytosterols and steroidal glycoalkaloids, respectively. Silencing of both genes, in the roots, was successful, and upon SMT1 silencing the phytosterol concentration in both root and root exudate were reduced. Silencing of SSR2 not only reduced biosynthesis of steroidal glycoalkaloids, but also of saponins, while, surprisingly, the concentration of SolA increased. Hatching assays with G. rostochiensis confirmed this observation. Since the silenced plants displayed quite different root exudate metabolic profiles, I carried out microbiome analysis and demonstrated changes in the microbial community composition.

In Chapter 5 I studied the biosynthesis of SolA using a custom-build aeroponics system. I found that the SolA concentration in tomato root exudate is influenced by abiotic and biotic factors, in particular, nitrogen deficiency and the presence of microbes increased it. Following these results, I performed an RNA-seq experiment on the roots of the tomato plants in order to identify genes that correlate with SolA production. I found four possible candidate genes including a terpene cyclase and three cytochrome P450s.

Finally, in Chapter 6 I discuss the findings of my thesis, including the importance of a reliable analytical method to quantify the SolA concentration in root exudates and how biotic and abiotic factors stimulate its production. Moreover, I discuss the use of VIGS as a great tool to investigate and validate candidate genes involved in the biosynthesis of SolA and other root produced metabolites and the role these metabolites may have on rhizosphere organisms.
Samenvatting
In Hoofdstuk 1 van mijn thesis introduceer ik het concept van het bodemecosysteem en het belang ervan voor de landbouw. Ik leg uit hoe planten hun rhizosfeer vormen met behulp van signaalmoleculen die door hun wortels worden uitgescheiden, waarbij ik de aandacht vestig op verschillende soorten interacties tussen planten en de omringende organismen, waaronder microben, schimmels, nematoden en andere planten. Zowel gunstige als schadelijke soorten interacties worden uitgelegd, waaronder symbiotische relaties, allelopathie en tritrofische interacties. Ik besteed speciale aandacht aan de plant-nematoden interactie, het introduceren van de levenscyclus van plantparasitaire nematoden en het introduceren van het concept van eclepines. Eclepines zijn triterpenoïde moleculen die door planten in de rhizosfeer worden uitgescheiden en die het uit het ei komen van parasitaire cystenaaltjes zoals aardappelcystenaaltjes (PCN’s) induceren. Het eclepine van PCN heet solanoeiclepin A (solA), dat wordt aangetroffen in exudaat van aardappel- en tomatenwortels. De aanwezigheid van dergelijke moleculen in de rhizosfeer opent de mogelijkheid om deze stoffen te gebruiken om de landbouw te verbeteren, maar de functie van de meeste moleculen in het wortelexudaat is nog onbekend.

De rol van SolA is onderzocht sinds 1949, toen de moleculaire structuur ervan nog niet was geïdentificeerd en het werd aangeduid als aardappelcystenematode ‘hatching’ factor. Sinds de ontdekking van de SolA-structuur in 1996 zijn studies van dit molecuul vooral gericht op de chemische synthese en de interactie met PCNs. Aangezien een eventuele gunstige functie van SolA in de rhizosfeer nog niet is opgehelderd, en de studie daarvan wordt belemmerd door de lage concentratie in de wortelexudaten, beschrijf ik in Hoofdstuk 2 een efficiënte analytische methode om SolA in wortelexudaten te detecteren met een extractie in één stap en UPLC-MS/MS-analyse. Ik heb de methode gebruikt om SolA te analyseren in een aantal wilde tomaten verwanten, waaronder de ‘trapcrop’ Solanum sisymbriifolium, en ik heb aangegeven dat er nogal wat variatie is in het niveau van solA dat wordt geproduceerd. Met behulp van hatching-assays met PCN Globodera pallida, demonstreer ik een positieve correlatie tussen de SolA-concentratie in het wortelexudaat en de hoeveelheid larven die uit het ei komen.

De detectie van SolA bij verwante wilde tomaten in Hoofdstuk 2 was voor mij aanleiding om in Hoofdstuk 3 een verzameling van 340 verwante wilde aardappelverwanten uit de Petota-sector te screenen op hun SolA-productie. Ik vond een reeks soorten die SolA produceren, maar ook een groot aantal die dat niet deden. Zelfs binnen dezelfde soort was er variatie tussen genotypes die SolA produceren en andere die dat niet doen. Tests met G. pallida toonden aan dat sommige van de genotypes die geen SolA produceren nog steeds PCN ‘hatching’ induceren, wat waarschijnlijk duidt op de aanwezigheid van andere ‘hatching’ factoren (HFs) of ‘hatching stimulants’ (HSs). Om de aard van deze nieuwe signaalmoleculen te onderzoeken, werd fractionering van een selectie van wortelexudaten uitgevoerd en werd de ‘hatching’ activiteit van de verschillende fracties beoordeeld. Ook dit suggereert dat andere HFs aanwezig zijn in de wortelexudaten. Interessant is dat Globodera rostochiensis een heel andere reactie op deze wilde aardappelwortelexudaten
vertoonde dan *G. pallida*, wat suggereert dat de twee *Globodera*-soorten een verschillende gevoeligheid hebben voor dezelfde HF's.

Om in staat te zijn SolA biosynthetische genkandidaten te karakteriseren, heb ik in **Hoofdstuk 4** systemische Virus Induced Gene Silencing (VIGS) ontwikkeld om de expressie van genen die betrokken zijn bij terpenoïde routes in de wortels, te verlagen. Als model kandidaatgenen gebruikte ik *STEROL METHYLTRANSFERASE (SMT1)* en *STEROL SIDE CHAIN REDUCTASE 2 (SSR2)* die betrokken zijn bij de biosynthese van respectievelijk fytosterolen en steroïdale glycoalkaloïden. Silencing van deze genen, in de wortels, was succesvol, en na *SMT1* silencing was de fytosterolconcentratie in zowel wortel- als wortellexudaat verminderd. Silencing van *SSR2* verminderte niet alleen de biosynthese van steroïde glycoalkaloïden, maar ook van saponinen, terwijl verrassend genoeg de concentratie van SolA toenam. ‘Hatching’ tests met *G. rostochiensis* bevestigden deze waarneming. Omdat de op deze manier behandelde planten heel verschillende wortellexudaat metabolische profielen vertoonden, heb ik microbiom analyses uitgevoerd en veranderingen in de samenstelling van de microbiële gemeenschap aangetoond.

In **Hoofdstuk 5** heb ik de biosynthese van SolA bestudeerd met behulp van een zelf ontwikkeld aeroponics systeem. Ik ontdekte dat de SolA-concentratie in het exudaat van tomatenwortels wordt beïnvloed door abiotische en biotische factoren, met name stikstofgebrek en de aanwezigheid van microben. Naar aanleiding van deze resultaten heb ik een RNA-seq-experiment uitgevoerd op de wortels van de tomatenplanten om genen te identificeren die correleren met SolA-productie. Ik vond vier mogelijke kandidaatgenen, waaronder een terpeencyclase en drie cytochrom P450's.

Ten slotte bespreek ik in Hoofdstuk 6 de bevindingen van mijn proefschrift, waaronder het belang van een betrouwbare analytische methode om de SolA-concentratie in wortellexudaten te kwantificeren en hoe biotische en abiotische factoren de productie ervan stimuleren. Bovendien bespreek ik het gebruik van VIGS als een geweldig hulpmiddel voor het onderzoeken en valideren van kandidaatgenen die betrokken zijn bij de biosynthese van SolA en andere door wortels geproduceerde metaboliëten en de rol die deze metaboliëten kunnen hebben op rhizosfeer-organismen.
Acknowledgments
When I started this PhD project, I had no idea how wonderful and painful it would have been. I am proud of all the work I have done and the results I got, I matured not only as a scientist but also as a person. All of this would have never been possible without the support of all the great people around me who inspired and helped me.

The first word of gratitude goes to my promotor, professor Harro Bouwmeester. Dear Harro, thank you so much for the opportunity you gave me, I was a bit scared at the beginning of my PhD, finding myself in a totally new environment and in a new country. You always supported and helped me throughout the difficulties. I will always remember your great optimism and your capability of solving problems, pushing me to believe in my project even when I could only see the failure of it. Also, thank you for your patience, I believe it was not easy to cope with me in the last part of my PhD when I was most stressed and nervous, but you managed to guide and encourage me, and I finally made it!

I also want to thank my co-promotor, dr. Lemeng Dong. Thank you for your help during this difficult journey, I was not always happy with the huge amount of work you gave me, but in the end, I really appreciate your scientific approach and the many great ideas you have. I wish you all the best with your dream of creating a group of your own.

Special thanks go to my paragymphs: Suzanne and André. Dear Suzanne, you are one the most organized people I have ever met. I appreciate and admire your working attitude and the way you manage not only the lab but also its (sometimes messy) people. You took our small and disorganized lab and completely changed it into a great working place. I cannot remember a time where you did not help me, even in the busiest days. If I got this far it is also thanks to you and your precious advice. I will be always happy to share a chocolate cookie or a cake with you and to chat. I wish you all the best with your beautiful family. Dear André, how many times have you heard me complaining about my PhD? I think one too many. You are one of the many great surprises I encountered during this journey. Always with a smile on your face, you have one of the brightest minds I have ever met, full of great ideas and passion for your work. Collaborating with you has been a pleasure and I hope our paper will be out soon, so we can celebrate this milestone together. I cannot express enough gratitude for hearing me out and helping me during the most difficult period of writing my thesis. I wish you all the luck with your career, you deserve it!

I also want to thank all the other members of the PhD group, new or old. Dear Lieke and Bora we started together this adventure and I am happy I shared it with you, thank you so much for all the nice chats, laughs and great memories! Yanting you are a gentle and kind soul, thank you for helping me during my first visit to China, Changsheng thank you for the help in the lab and scientific discussion, you are a great scientist! Davar, I cannot be happier to leave our project into your capable hands, please take care of our SolA! Kristyna it took a while, but you finally found SolA, I had no doubt you could manage it. Benjamin and Mehran whenever I think about a great friendship, I think about you
two, thank you for all the great moments during lunch and you funny gags. **Sebastien** and **Fred**, I wish you all the luck with your PhD, you are great additions to the PHB group. **Jurre, Mario, Aimee** and **Yuting** our tireless technicians, thank you for your patience and help with my endless experiments. **Harrold** and **Ludek**, thank you for taking care of my plants in the greenhouse and for the nice chats. **Tieme, Fran, Francesca** and all the other great people in SILS, thank you for all your help, precious advice, hugs, and beers! **Francesco, Mattia, Federico e Beatrice**, my Amsterdam Italian gang, thank you for all support, the chats, the laughs, and the dinners together, I hope we can have many more! A special thanks also to **Clara Gazzarri** who designed the cover of this thesis, you are an amazing artist and I wish more people can appreciate your artwork in the future!

I also want to thank some special people without whom I would have never been able to start this PhD. First, dr. **Andrea Moglia**, my supervisor during my master thesis at the Genetic plant group in Turin. I cannot really express my gratitude enough, working with you during my first thesis is one of the fondest memories I have. You taught me so much about science and how to plan and manage experiments and I tried to put all this to good use during my PhD. I love your attitude and your problem-solving skills; you were the first one to suggest looking for a PhD position abroad and you also helped me realize how much I love plant biotechnology. I still remember how amazed I was when I first saw the GMO purple tomato you made, I can tell you I still have the same feelings and I hope one day I can also collaborate to improve crop genetic background in Europe.

Anna Milani our technician, you welcomed me in your lab with open arms, you supported me through my master thesis, I think if I managed to get through my PhD is also thanks to your valuable lessons about lab safety and how to keep a clean bench.

Edoardo, do you still remember when we went to Florence and I expressed the wish to get a PhD position abroad? That same day we went home and I found out I had to prepare for my second interview in the PHB group. I know I ruined your visit, but I cannot thank you enough for all the help with the presentation, articles reading and searching. I still remember the day before the interview you insisted to repeat the presentation one last time even if it was midnight. You are the kind of friend I will always seek in my life: generous, funny, and always happy to help! I wish you all the luck with your life in Sweden with Giulia.

Then I want to thank my family who will always support me no matter what. Mamma, babbo, mi avete cresciuta con l’idea che il duro lavoro, l’impegno e il rispetto per gli altri e se stessi siano la chiave per realizzarsi. Sto cercando di mettere in pratica tutte ciò che mi avete insegnato e per questo non vi ringrazierò mai abbastanza. Grazie anche per tutto il supporto e l’affetto che mi avete dato in questi anni all’estero, spero un giorno di poter tornare in Italia arricchita da tutto ciò che ho imparato. **Dario**, sono felice che tu abbia trovato un lavoro che ti piace, vorrei ringraziarti per il supporto dimostrato anche a distanza.
ACKNOWLEDGMENTS

In the end I would like to thank the main reason I managed to get through the final steps of my PhD.

Dear Valerio, I know people said this a lot, but I really think you are the best thing that happened to me. We met by pure chance, and I am still amazed how easy would have been for us not to meet at all. Thinking back, I realize how much I would have missed if I didn’t press that button on my phone and sometimes, I am even scared. Lucky for me I did, and I had the chance to meet one of the most wonderful persons there is.

I want to thank you for the patience that you showed during my PhD, and even more while writing my thesis, the support while I was struggling looking for a job, the help in writing my CV, the advice on the first job interviews. Sharing my enthusiasm over small things, crying with me over the biggest ones. You knew I could do it, even if I wasn’t believing it and that pushed me to move on. I don’t know if I could endure what you did, I still have a lot to learn from you.

Now that I am finally settled in Germany, doing something that I am enjoying, I would like to thank you again for encouraging me to accept this job and putting up with living in two different countries. Despite the distance between us, I love you even more.
List of Publications

