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Chapter 1

Introduction

Computational modelling and simulation of real-world phenomena con-
tributes to a better understanding of these phenomena and facilitates predicting
the dynamics of the underlying systems to support decision making in sciences
and engineering [1–3]. These models emulate the nature of the system from
different spatial and temporal scales, and combine mechanisms from multi-
disciplinary perspectives. However, no matter how sophisticated the models
are constructed, they are still simplifications and involve different sources of
uncertainties and errors owing to the limit of knowledge and computational
resources.

Uncertainty quantification (UQ) applies statistical analysis to the compu-
tational models to quantify the effect of uncertainties in initial or boundary
conditions, and of other parameters of computational models on their simulated
quantities of interest (QoI) [4]. Common UQ methods, such as those based
on the Monte Carlo method, require a large number of simulations to provide
enough data for the numerical integration of the statistical estimator. However,
this can be prohibitive for computationally expensive models to achieve. One
remedy to the problem is to adopt surrogate modelling. A surrogate approxi-
mates the model response at a relatively low computational cost, hence can
replace the original model in the UQ experiment. To what extent the use of
the surrogate model influences the estimation of the model uncertainties is an
open question.
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2 Chapter 1

In this chapter, UQ and surrogate modelling are introduced. The research
in this thesis is inspired by the need for UQ in a biomedical application, in-stent
restenosis model. This chapter also shortly describes this application.

1.1 Uncertainty quantification

Uncertainty quantification studies all sources of errors and uncertainties
involved in numerical simulations [3]. Generally, the uncertainties can be
categorised into aleatoric uncertainties and epistemic uncertainties. The former
describes the stochasticity of the model, which cannot be reduced by additional
physical or experimental knowledge. Epistemic uncertainty refers to the systemic
deficiency of modelling due to the lack of knowledge, such as the assumptions
of the model or inadequacies of parameters [4].

There are two types of UQ problems, forward uncertainty propagation and
inverse UQ [4]. Forward uncertainty propagation is to investigate the variation
in the QoI of the model subject to the input uncertainties [5–7]. The inverse
UQ calibrates inputs based on the measured or known data with Bayesian
techniques [8, 9].

The most common UQ method for the forward propagation problem is a
sampling-based algorithm, for example, the black-box Monte-Carlo method
[10–13]. Sampling-based methods compute the statistics of QoI based on a
collection of the responses of a model with input samples generated from uncer-
tain input distributions. Such black-box methods can be applied to any model
regardless of the nonlinearity and complexity of the model owing to the non-
intrusive properties of the methods. However, the sampling-based methods are
computationally expensive due to the slow convergence rates. A large number
of evaluations of the model responses are required for decent estimates of the
uncertainties. Various sampling techniques have been developed to reduce the
number of samples needed for the evaluation, such as stratified sampling [14–16]
and quasi-random sampling [17, 18]. However, for models with high computa-
tional complexity, such as large-scale applications [19] or multiscale simulations
[20], it is still impractical to implement even with advanced sampling-based
methods. As a result, surrogate modelling is introduced as a representation for
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Figure 1.1: A schematic diagram of semi-intrusive UQ based on Monte Carlo
method with a surrogate model for micro submodel.

efficient evaluations in the UQ.
As opposed to the non-intrusive UQ methods, intrusive UQ methods require

reformulating the governing equation of the system based on polynomial chaos
(PC) and Galerkin projection [21–23]. However the properties of intrusive
methods typically limit their application to linear problems. The basis and the
order of expansion need to be chosen such that they can present not only the
output QoI but also all the intermediate variables [21]. This means that it will
be non-trivial and computationally expensive to compute the solution if highly
nonlinear terms are involved in the governing equation [24, 25].

Apart from intrusive and non-intrusive UQ methods, a set of semi-intrusive
UQ methods (SIUQ) has been proposed for multiscale simulations [26] and
demonstrated their effectiveness for several multiscale UQ scenarios [27, 28].
Multiscale simulations couple mathematical models of relevant processes on dif-
ferent spatial or temporal scales together using suitable scale bridging methods.
The term "semi-intrusive" refers to additional interventions into the code of
the model compared to non-intrusive approaches: one "opens up" the black
box and considers the coupling structure of the multiscale model while the
embedded single scale models are still viewed as black boxes. Usually the
output of a multiscale model is derived from a macroscale submodel, which in
turn is implicitly determined by microscale dynamics. One of the approaches
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from [26] relies on performing a Monte Carlo UQ on the macroscale submodel,
while replacing the most costly microscale submodel by a surrogate model.
Replacing the expensive part of a model with a relatively cheap surrogate can
often significantly improve computational efficiency, while reserve part of the
physics of the model for analysis. Figure 1.1 shows a schematic diagram of a
semi-intrusive UQ based on Monte Carlo method with a surrogate model. The
effectiveness of the semi-intrusive methods has been demonstrated through the
applications shown in [27, 28].

Sensitivity analysis is another important part of UQ. It measures and
quantifies the relative contribution of each uncertain parameter or input to
the variations of QoIs. The result of sensitivity analysis can be applied to
simplify the model by fixing the insensitive inputs, or specify important regime
where uncertain parameters have the most significant impact [4]. The methods
of sensitivity analysis can be categorised into two types, local and global.
Local sensitivity analysis is typically based on the local derivative of QoIs
with respect to uncertain parameters, while the global methods measure how
uncertainty in the output can be apportioned to uncertain inputs [4]. The
variance-based method, also known as the Sobol method [29] is one of the
most popular global sensitivity methods. It assumes that the latent function
between uncertain inputs and QoIs can be decomposed into a combination of
functions of individual uncertain inputs and their higher-order interactions.
The variance of each corresponding part is computed and compared to the total
variance, which leads to the Sobol indices. The computational efficiency of the
method was later further improved by Saltelli [30, 31], yielding Sobol method
computationally tractable.

1.2 Surrogate modelling

Surrogate modelling, also known as metamodelling or emulator, aims to
approximate the behaviour of the system and predict high-fidelity model re-
sponse at a relatively low computational cost. The construction of a surrogate
model can be categorised into three types: data-fit methods, projection-based
methods and simplified models [32].
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The data-fit methods learn latent functions between inputs and outputs
of a limited amount of available data, which is also termed regression or
interpolation-based methods [4]. Various methods can be applied to perform
the data-fitting under different circumstances. For example, linear regression
provides a simple but interpretable prediction of linear behaviour of data [33, 34],
while polynomial regression [35] and radial basis functions interpolation [36]
are capable of performing nonlinear regression by presuming smoothness of
the latent function with the order of the polynomial and chosen radial basis
function, respectively. Apart from these point estimation methods, Bayes’
theorem provides a probabilistic framework to integrate the information of a
prior, and to infer the posterior distribution of the output instead of single point
estimation. Bayesian inference methods, such as Bayesian linear regression
[37], and Bayesian neural network [38], allow one to build confidence and
reliance for the prediction [39]. Stochastic methods, such as polynomial chaos
expansion [40] and stochastic collocation [41], construct the spectral expansion
of random variable and directly derive the moments for QoI. Owing to the finite-
dimensional representation (bases) used in the methods, they are sometimes
also viewed as projection-based methods.

Gaussian process (GP) regression is one of the most commonly used data-fit
methods owing to its non-parametric and Bayesian inference nature [42–44]. It
was first proposed by Krige for geostatistics [45], and later extensively studied
and extended to solve the regression problem under different scenarios, such
as multi-task/multi-output Gaussian process for vector-valued functions [46],
heteroscedastic Gaussian process for input dependent noise scenarios [47–49],
sparse Gaussian process with inducing inputs for efficient training of large
datasets [50, 51] or deep Gaussian process with a hierarchical structure to
capture more complex processes [52]. In addition, the predictive distribution
of GP provides active criteria for adaptive sampling which allow one to itera-
tively choose more informative training samples rather than using a one-shot
sampling strategy [53]. The adaptive sampling techniques can further reduce
the computational cost needed for sample generation during surrogate model
construction, especially relevant for high-dimensional problems.
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Another state-of-art data-fit methods are neural networks [54] which is also
known as deep learning, and has gained significant attention in computational
science and engineering [55–58]. A typical feed-forward neural network consists
of multiple layers and the output of each layer is a function of the linear
combinations of its inputs. The neural network model learns the data by
minimising the error (cost function) between its prediction and desired output. It
has demonstrated strong ability to learn and predict complex nonlinear dynamics
in the data [59–61]. Other forms of neural networks have been proposed to solve
different problems. For example, convolutional neural networks (CNNs) have
shown their advantages in handling field prediction [61, 62] owing to its efficient
convolution operation, and recurrent neural networks can be applied to learn
time-series data by taking the information of the previous time step into account
[63]. In addition, neural network models can be applied as an alternative to solve
differential equations [64, 65], or even solve ill-posed problems by assimilating
additional data [66].

The projection-based methods of surrogate modelling identify a low dimen-
sional subspace that is constructed to retain the essential patterns of the system
input-output mapping [32]. The numerical solutions, such as velocity and
pressure fields of fluid dynamics, are generally correlated over time and space.
Computational cost can be significantly reduced if the hidden low-dimensional
pattern or basis could be found. To construct the reduced-order basis, an
ensemble of numerical solutions (snapshots) based on independent variable
values is required. Such an ensemble of data is also known as snapshot set,
through which a compressed description of the data can be extracted. One of
the widely applied reduced-order methods is Proper Orthogonal Decomposition
(POD) [67]. The POD can be realized using principal component analysis
(PCA), or the singular value decomposition (SVD). The projection coefficients
can be computed either in an intrusive manner by manipulating the governing
equations with Galerkin methods [68, 69] or in a non-intrusive manner by
formulating it as an interpolation problem [60, 70]. The intrusive methods
preserve the physics behind the model and require to solve reduced order system
for prediction. However it may still suffer from the high computational cost
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when computing the projection of the operators of governing equations from a
high dimensional full order model [60]. The non-intrusive methods, in contrast,
are entirely data-driven and assume that the projection coefficients change
continuously over space, time or parameters. The interpolator is trained based
on the existing data and subsequently applied for the prediction.

Dynamic mode decomposition is another projection-based method for the
temporal decomposition of computational fluid dynamics [71, 72]. Empirical
interpolation method [73] and discrete empirical interpolation method [74] were
proposed to recover an affine expansion for the nonlinear problem. Opera-
tor inference methods can directly approximate the reduced-order differential
operator from data without knowing full-order operators [75, 76].

Surrogate modelling based on simplified models can be an approximation on
a coarse grid [77], or a simplification by neglecting non-linear terms [78], which
could e.g. be the case for low Reynolds number flow, simplifying the Navier-
Stokes equations to a linear Stokes equation. However, such simplification
usually requires in-depth knowledge of the original model to ensure the validity
of the model.

1.3 In-stent restenosis model

The research in this thesis is inspired by the need for UQ in a biomed-
ical application, in-stent restenosis model. The in-stent retenosis process
involves multiple uncertain physiological and mechanical parameters, such as
re-endothelialization rate, blood flow velocity and stent deployment depth.
UQ and sensitivity analysis therefore are applied to quantify and study the
contributions of these uncertain parameters to the QoI, neointima growth or
cross-sectional area of the lumen. Surrogate modelling is required owing to
the high computational cost of the model evaluation, especially the three-
dimensional model. Here we briefly introduce in-stent restenosis process and
the in-stent restenosis model.

Coronary heart disease is mainly caused by the accumulation and devel-
opment of atherosclerotic plaques, which narrow the vessel lumen and reduce
the flow of blood. It can cause ischaemia or further evolve into a myocardial
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Figure 1.2: Intravascular ultrasound images of the stenosis and restenosis from
[81]. a) normal coronary artery, b) coronary stenosis, c) after percutaneous
coronary intervention (stenting), d) restenosis.

infarction. The most common treatment is percutaneous coronary intervention
with stent deployment [79, 80]. However, in addition to displacing the plaque
from the lumen and restoring the blood flow, the balloon dilation and stent
placement also denude the endothelium layer and damage the vessel wall. The
damage then triggers smooth muscle cell (SMC) activation, proliferation and
migration and extracellular matrix formation, as well as other processes, e.g.
inflammation and platelet aggregation [81, 82]. This leads to the growth of
neointima, which is newly formed tissue composed mainly of smooth muscle
cells and extracellular matrix, in the vessel lumen. The excessive growth of
neointima can result in a renarrowing of the vessel, a condition known as
in-stent restenosis (ISR). Figure 1.2 shows a series of intravascular ultrasound
images of normal coronary artery, stenosis, and restenosis.

To study the mechanism of restenosis, a multiscale model for ISR was
proposed [83] and a first two-dimensional version of that model (named ISR2D)
was developed and studied in detail [84–86]. The model consists of three
submodels: an initial condition (IC) model, an agent-based SMC model and a
blood flow (BF) model. The IC model simulates balloon expansion and stent
deployment and provides the input configuration for the other two models. The
agent-based SMC model simulates the biological and mechanical states of each
cell of the vessel, while the BF model provides the haemodynamics information
as a function of the current vessel lumen shape. For every time step of the SMC
model, the BF simulation is run to convergence for the current geometry, and
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the resulting wall shear stress values are sent back to the SMC model, which
uses those in the model of nitric oxide production by endothelial cells that in
turn regulates the SMCs.

Sufficiently high wall shear stress (WSS) at the arterial wall triggers en-
dothelium to produce nitric oxide, which in turn inhibits the growth of the
SMCs if the WSS exceeds a threshold value. Blood flow thus affects SMC
growth, but in turn is also affected by it, as the proliferating SMCs change the
geometry of the artery. The main output of the model is the cross-sectional
area of the lumen as a function of time after stenting. A clinically recognised
ISR occurs if more than 50% of the original cross-sectional area of the artery is
covered by the neointima [87].

The ISR2D model has been applied to investigate the effect of functional
endothelium regeneration and the impact of stent deployment and design
on restenosis [6, 28, 84, 85]. Most recently, the effects of local blood flow
dynamics with scenarios of adaptive and non-adaptive coronary vasculature on
restenosis were studied based on the ISR2D model [88]. The two-dimensional
model is, however, a simplification of the actual pathology. Therefore, a
more comprehensive three-dimensional model (named ISR3D) was developed
and compared with in vivo experimental scenarios [89, 90]. More detailed
descriptions of ISR2D and ISR3D can be found in Chapter 2 and Chapter 3
respectively.

1.4 Thesis outline

This PhD thesis focuses on the non-intrusive and semi-intrusive UQ analysis
of the biomedical ISR model, with surrogate modelling techniques. We mainly
focus on the forward propagation problems and apply various surrogate mod-
elling techniques, such as GP regression and CNN to reduce the computational
cost of the expensive multiscale simulation and the large number of evaluations
required in the UQ.

Chapter two presents uncertainty estimations of the ISR2D model with both
non-intrusive and semi-intrusive methods with surrogate modelling. A surrogate
model based on GP regression for non-intrusive UQ takes the whole model as
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a black-box and directly maps the three uncertain inputs to the quantity of
interest, the neointimal area. In the semi-intrusive UQ, the most expensive
submodel is replaced with a surrogate model. We developed a surrogate model
for the blood flow simulation using CNN. The results on uncertainty propagation
with non-intrusive and semi-intrusive metamodelling methods allow us to draw
conclusions on the advantages and limitations of these methods.

A UQ of ISR3D with four uncertain parameters, including endothelium
regeneration time, the threshold strain for smooth muscle cells bond breaking,
blood flow velocity and the percentage of fenestration in the internal elastic
lamina, is presented in Chapter three. Two quantities of interest were studied,
namely the average cross-sectional area and the maximum relative area loss in a
vessel. Owing to the high computational cost required for UQ, a surrogate model,
based on Gaussian process regression with proper orthogonal decomposition,
was developed and subsequently used for model response evaluation in the UQ.
A detailed analysis of the uncertainty propagation and sensitivity analysis is
presented.

In chapter four, a data-driven surrogate model for blood flow simulations
in unparameterised vessels is presented. The surrogate model is based on
a non-intrusive reduced-order method and surface registration. The surface
registration is applied to parameterise the shapes and offer a mapping between
the reference domain and target domain. With the coordinate mapping, all
the evaluations of FOM are performed on a reference domain which ensures
the spatial compatibility of snapshots. The non-intrusive reduced order model
is subsequently constructed using POD and the RBF interpolator is trained
for predicting the reduced coefficients of ROM based on reduced coefficients of
geometric parameters of the shape. Two examples of blood flowing through a
stenosis and a bifurcation are presented and analysed.

Chapter five introduces a series of UQ patterns (UQPs) for efficient UQ
of multiscale models, and categorises them by the level of intrusiveness and
optimization method. These UQPs provide the basic building blocks to create
tailored UQ for multiscale models. We show how these patterns can be imple-
mented in multiscale models using the formalism of the multiscale modelling and
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simulation framework (MMSF) and corresponding coupling toolkit, MUSCLE3.
The results of the work presented in the thesis are summarised and discussed

in Chapter six.


