Meta-analysis reveals intraspecific variation in herbivores for plant-mediated interactions

Citation for published version (APA):
Meta-analysis reveals intraspecific variation for plant-mediated interactions in herbivores

Summary

- **Plant-mediated interactions** among herbivores are important drivers of community dynamics, but we lack insight into variation among herbivores for these interactions.

- A meta-analysis of datasets investigating plant-mediated interactions between herbivorous *Tetranychus urticae* and *Tetranychus evansi* spider mites infesting *Solanum lycopersicum* tomato plants showed that *T. urticae* had negative effects on the performance of other spider mite populations, whereas *T. evansi* affected them positively.

- In both interactions effect sizes varied strongly, with 18 - 29% variation explained by the time populations had been cultured. Longer lab culturing produced smaller effect sizes.

Introduction

When herbivores attack a plant, they induce changes in plant traits, which affect other herbivores on the same plant. Such ‘plant-mediated interactions’ among herbivores are important drivers of community dynamics (Shan et al. 2014).

Selection among herbivore populations can produce intraspecific variation for plant-mediated interactions with other herbivores. However, few studies assess this variability, which is what we did here, using plant-mediated interactions between two spider mite species on tomato host plants. We ask:

I. To what extent do the spider mites *Tetranychus evansi* and *Tetranychus urticae* affect the performance of other spider mites through plant-mediated effects?

II. What factors contribute to variation in the strength of the interaction?

Materials & Methods

We found 38 datasets where intact tomato plants were infested with either *T. evansi* or *T. urticae* (Step 1), and oviposition rates of other *T. evansi* or *T. urticae* populations were measured on the same leaflet (Step 3). For each dataset we calculated the standardized mean difference in oviposition rates per plant of adult females between:

A. *T. evansi*-infested plants and clean control plants

B. *T. urticae*-infested plants and clean control plants

We used these effect sizes (std mean difference) as input for random-effects meta-analysis.

Results

- *T. evansi* had positive effects on the performance of other mites, and *T. urticae* affected them negatively. Both interactions showed strong variability.

A. *T. evansi*-infested plants vs. clean control plants

B. *T. urticae*-infested plants vs. clean control plants

Discussion

- The reduction in effect size over time can be explained by loss of function due to selection against plant defense induction and suppression in lab cultures, or due to mutation accumulation as a result of random genetic processes.

- This case of ‘inadvertent selection’ in lab cultures demonstrates intraspecific variation in herbivores for plant-mediated effects on other herbivores, and suggests a change in heritable variation for these interactions over time.

Step 1: Insect with *T. evansi*, *T. urticae* or no mites for 2 - 7 days

Step 2: remove mites, eggs and web with a fine brush

Step 3: cut leaf discs from damaged tissue, place new adult females on each leaf disc individually, and assess oviposition rate over 2 - 5 days

Materials & Methods

We found 38 datasets where intact tomato plants were infested with either *T. evansi* or *T. urticae* (Step 1), and oviposition rates of other *T. evansi* or *T. urticae* populations were measured on the same leaflet (Step 3). For each dataset we calculated the standardized mean difference in oviposition rates per plant of adult females between:

A. *T. evansi*-infested plants and clean control plants

B. *T. urticae*-infested plants and clean control plants

We used these effect sizes (std mean difference) as input for random-effects meta-analysis.

Results

- *T. evansi* had positive effects on the performance of other mites, and *T. urticae* affected them negatively. Both interactions showed strong variability.

A. *T. evansi*-infested plants vs. clean control plants

B. *T. urticae*-infested plants vs. clean control plants

Discussion

- The reduction in effect size over time can be explained by loss of function due to selection against plant defense induction and suppression in lab cultures, or due to mutation accumulation as a result of random genetic processes.

- This case of ‘inadvertent selection’ in lab cultures demonstrates intraspecific variation in herbivores for plant-mediated effects on other herbivores, and suggests a change in heritable variation for these interactions over time.

Summary

- **Plant-mediated interactions** among herbivores are important drivers of community dynamics, but we lack insight into variation among herbivores for these interactions.

- A meta-analysis of datasets investigating plant-mediated interactions between herbivorous *Tetranychus urticae* and *Tetranychus evansi* spider mites infesting *Solanum lycopersicum* tomato plants showed that *T. urticae* had negative effects on the performance of other spider mite populations, whereas *T. evansi* affected them positively.

- In both interactions effect sizes varied strongly, with 18 - 29% variation explained by the time populations had been cultured. Longer lab culturing produced smaller effect sizes.

Introduction

When herbivores attack a plant, they induce changes in plant traits, which affect other herbivores on the same plant. Such ‘plant-mediated interactions’ among herbivores are important drivers of community dynamics (Shan et al. 2014).

Selection among herbivore populations can produce intraspecific variation for plant-mediated interactions with other herbivores. However, few studies assess this variability, which is what we did here, using plant-mediated interactions between two spider mite species on tomato host plants. We ask:

I. To what extent do the spider mites *Tetranychus evansi* and *Tetranychus urticae* affect the performance of other spider mites through plant-mediated effects?

II. What factors contribute to variation in the strength of the interaction?

Materials & Methods

We found 38 datasets where intact tomato plants were infested with either *T. evansi* or *T. urticae* (Step 1), and oviposition rates of other *T. evansi* or *T. urticae* populations were measured on the same leaflet (Step 3). For each dataset we calculated the standardized mean difference in oviposition rates per plant of adult females between:

A. *T. evansi*-infested plants and clean control plants

B. *T. urticae*-infested plants and clean control plants

We used these effect sizes (std mean difference) as input for random-effects meta-analysis.

Results

- *T. evansi* had positive effects on the performance of other mites, and *T. urticae* affected them negatively. Both interactions showed strong variability.

A. *T. evansi*-infested plants vs. clean control plants

B. *T. urticae*-infested plants vs. clean control plants

Discussion

- The reduction in effect size over time can be explained by loss of function due to selection against plant defense induction and suppression in lab cultures, or due to mutation accumulation as a result of random genetic processes.

- This case of ‘inadvertent selection’ in lab cultures demonstrates intraspecific variation in herbivores for plant-mediated effects on other herbivores, and suggests a change in heritable variation for these interactions over time.

Step 1: Insect with *T. evansi*, *T. urticae* or no mites for 2 - 7 days

Step 2: remove mites, eggs and web with a fine brush

Step 3: cut leaf discs from damaged tissue, place new adult females on each leaf disc individually, and assess oviposition rate over 2 - 5 days

Materials & Methods

We found 38 datasets where intact tomato plants were infested with either *T. evansi* or *T. urticae* (Step 1), and oviposition rates of other *T. evansi* or *T. urticae* populations were measured on the same leaflet (Step 3). For each dataset we calculated the standardized mean difference in oviposition rates per plant of adult females between:

A. *T. evansi*-infested plants and clean control plants

B. *T. urticae*-infested plants and clean control plants

We used these effect sizes (std mean difference) as input for random-effects meta-analysis.

Results

- *T. evansi* had positive effects on the performance of other mites, and *T. urticae* affected them negatively. Both interactions showed strong variability.

A. *T. evansi*-infested plants vs. clean control plants

B. *T. urticae*-infested plants vs. clean control plants

Discussion

- The reduction in effect size over time can be explained by loss of function due to selection against plant defense induction and suppression in lab cultures, or due to mutation accumulation as a result of random genetic processes.

- This case of ‘inadvertent selection’ in lab cultures demonstrates intraspecific variation in herbivores for plant-mediated effects on other herbivores, and suggests a change in heritable variation for these interactions over time.

Step 1: Insect with *T. evansi*, *T. urticae* or no mites for 2 - 7 days

Step 2: remove mites, eggs and web with a fine brush

Step 3: cut leaf discs from damaged tissue, place new adult females on each leaf disc individually, and assess oviposition rate over 2 - 5 days

Materials & Methods

We found 38 datasets where intact tomato plants were infested with either *T. evansi* or *T. urticae* (Step 1), and oviposition rates of other *T. evansi* or *T. urticae* populations were measured on the same leaflet (Step 3). For each dataset we calculated the standardized mean difference in oviposition rates per plant of adult females between:

A. *T. evansi*-infested plants and clean control plants

B. *T. urticae*-infested plants and clean control plants

We used these effect sizes (std mean difference) as input for random-effects meta-analysis.

Results

- *T. evansi* had positive effects on the performance of other mites, and *T. urticae* affected them negatively. Both interactions showed strong variability.

A. *T. evansi*-infested plants vs. clean control plants

B. *T. urticae*-infested plants vs. clean control plants

Discussion

- The reduction in effect size over time can be explained by loss of function due to selection against plant defense induction and suppression in lab cultures, or due to mutation accumulation as a result of random genetic processes.

- This case of ‘inadvertent selection’ in lab cultures demonstrates intraspecific variation in herbivores for plant-mediated effects on other herbivores, and suggests a change in heritable variation for these interactions over time.
