Understanding quantifiers in language

Szymanik, J.; Zajenkowski, M.

Published in:
Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Understanding Quantifiers in Language

Jakub Szymanik (J.Szymanik@uva.nl)
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Marcin Zajenkowski (Zajenkowski@psych.uw.edu.pl)
University of Warsaw, Stawki 5/7
00-183 Warszawa, Poland

Abstract

We compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata and push-down automata is psychologically relevant. Our research improves upon hypothesis and explanatory power of recent neuroimaging studies as well as provides evidence for the claim that human linguistic abilities are constrained by computational complexity.

Keywords: language comprehension; generalized quantifiers; finite- and push-down automata; computational semantics.

Introduction

We investigate the comprehension of simple quantifiers in natural language as described in a computational model posited by many linguists and logicians (see e.g. van Benthem (1986)). We refer to a recent neuropsychological investigation of the same problem by McMillan, Clark, Moore, Devita, and Grossman (2005) and account for some troubles with the interpretation of its results (see Szymanik (2007)). Moreover, we give some direct empirical evidence linking the computational complexity predictions with cognitive reality. Therefore, we provide an argument in the recent debate on the role of computational complexity in the cognitive science (see e.g. van Rooij (2008)). In particular, we compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata (simple devices without internal memory) and push-down automata (finite-automata with data storage) is psychologically relevant. For more extensive discussion and additional experiments see the manuscript (Szymanik & Zajenkowski, 2008).

Computability and Cognition

One of the primary objectives of cognitive psychology is to explain human cognitive performance. Taking a very abstract perspective we can say that a cognitive task is a computational task. Namely, the aim of a cognitive task is to transform the initial given state of the world into some desired final state. Therefore, cognitive tasks can be identified with functions from possible initial states of the world into possible final states of the world. Notice, that this understanding of cognitive tasks is very closely related to psychological practice. For instance, experimental psychology is naturally task oriented, because subjects are typically studied in the context of specific experimental tasks (see e.g. van Rooij (2008)).

David Marr (1983) proposed a commonly accepted general framework for analyzing levels of explanation in cognitive sciences. In order to focus on the understanding of specific problems, he identified three levels (ordered according to decreasing abstraction):

1. computational level (problems that cognitive ability has to overcome);
2. algorithmic level (the algorithms that may be used to achieve a solution);
3. implementation level (how it is actually done in neural activity).

Cognitive science has put a lot of effort into investigating the computational level of linguistic competence and today computational restrictions are taken very seriously when discussing cognitive capacities. For instance, a psychological version of the Church-Turing thesis (Turing, 1936) (Church, 1936) — stating that the human mind can only deal with computable problems — is widely accepted. Moreover, complexity restrictions on cognitive tasks have already been noted in the philosophy of language and mind (see e.g. Cherniak (1981), Hofstadter (2007)), the theory of language (see e.g. Levesque (1988)) and psychology of vision (see e.g. Tsotsos (1990)) leading to many variants of the Tractable Cognition Thesis stating that human cognitive (linguistic) capacities are constrained by computational resources, like time and memory (see e.g. Frixione (2001), Mostowski and Wojtyniak (2004), van Rooij (2008)). Unfortunately, there are not many empirical studies directly linking complexity predictions of computational models with psychological reality. One reason might be that the current debate is shaped around the question which computable tasks are feasible for human (bounded) agents. As a result the discussion involves references to very abstract problems of high computational complexity (NP-hard and beyond). These problems are very difficult to empirically confront with cognitive reality. Our idea in this paper is to track the links between cognitive tasks and computational complexity using simpler, less theoretically involved problems. As a result the present research increases our empirical evidence in favor of this connection.

Computability and Comprehension

In the paper we are concerned with a very basic linguistic ability of understanding quantifier sentences. In partic-
ular, we deal with the capacity of recognizing the truth-value of sentences with simple quantifiers (like “some”, “an even number of”, “more than 7”, “less than half”) in finite situations illustrated by pictures. We show that a simple computational model describing the processing of such sentences is psychologically plausible with respect to reaction time predictions.

Our interest in computational models of language comprehension is natural from a theoretical point of view. There is a tradition in the philosophy of language, going back to Gottlob Frege (1892), of thinking about the meaning of a sentence as the mode of presenting its truth-value. In modern terms we can try to explicate this idea by saying that the meaning of a sentence is an algorithm for finding its truth-value. This approach has been adopted by many theoreticians, to different degrees of explicitness, very often with a psychological motivations (see e.g. Suppes (1982) and Lambalgen and Hamm (2005)).

Previous Investigations in the Area

Quantifiers have been widely treated from the perspective of cognitive psychology (see e.g. Sanford, Moxey, and Paterson (1994)). But only recently cognitive science research devoted to the computational modelling of quantifier comprehension has been published for the first time. Research presented by McMillan et al. (2005) was the first attempt to investigate the neural basis of natural language quantifiers (see also (McMillan, Clark, Moore, & Grossman, 2006) for evidence on quantifier comprehension in patients with focal neurodegenerative disease, (Troiani, Peelle, Clark, & Grossman, 2009) for comparison between logical (Aristotelian) and numerical (cardinal) quantifiers, and (Clark & Grossman, 2007) for more general discussion). It was devoted to study brain activity during comprehension of sentences with quantifiers. Using neuroimaging methods (BOLD fMRI) the authors examined the pattern of neuroanatomical recruitment while subjects were judging the truth-value of statements containing natural language quantifiers. According to the authors their results verify a particular computational model of natural language quantifier comprehension posited by several linguists and logicians. One of the authors of the present paper has challenged this statement by invoking the computational difference between elementary quantifiers and parity quantifiers (Szymanik, 2007). The starting point of this research is this very criticism. Let us have a closer look at it.

McMillan et al. (2005) were considering the following two standard types of quantifiers: first-order and higher-order quantifiers. First-order quantifiers are those expressible in first-order predicate calculus, which is the logic containing only quantifiers \exists and \forall binding individual variables. In the research, the following first-order quantifiers were used: “all”, “some”, and “at least 3”. Higher-order quantifiers are those not expressible in first-order logic, for example “most”, “every other”. The subjects taking part in the experiment were presented with the following higher-order quantifiers: “less than half of”, “an even number of”, “an odd number of”.

To recognize first-order quantifiers we only need computability models which do not use any form of internal memory (data storage). Intuitively, to check whether sentence (1) is true we do not have to involve short-term memory (working memory capacity) (for a psychological model see e.g. (Baddeley, 2007)).

1. Every sentence in this paper is grammatically correct.

It suffices to read the sentences from this article one by one. If we find an incorrect one, then we know that the statement is false. Otherwise, if we read the entire paper without finding any incorrect sentence, then statement (1) is true. We can proceed in a similar way for other first-order quantifiers. Formally, it was proven by Johan van Benthem (1986) that first-order quantifiers can be computed by such simple devices as finite automata without cycles (loops of length > 1).

Theorem 1 A quantifier Q is first-order definable if and only if it can be recognized by an finite automaton without cycles.

For example, have a look at the automata in Figures 1, 2.

![Figure 1: This finite automaton checks whether every sentence in the text is grammatically correct. It inspects the text by sentence starting in the accepting state (double circled), q_0. As long as it does not find incorrect sentence it stays in the accepting state. If it finds such sentence, then it already “knows” that the sentence is false and move to the rejecting state, q_1, where it stays no matter what sentence is next.](image1)

1. Every sentence in this paper is grammatically correct.

It suffices to read the sentences from this article one by one. If we find an incorrect one, then we know that the statement is false. Otherwise, if we read the entire paper without finding any incorrect sentence, then statement (1) is true. We can proceed in a similar way for other first-order quantifiers. Formally, it was proven by Johan van Benthem (1986) that first-order quantifiers can be computed by such simple devices as finite automata without cycles (loops of length > 1).

Theorem 1 A quantifier Q is first-order definable if and only if it can be recognized by an finite automaton without cycles.

For example, have a look at the automata in Figures 1, 2.
2. Most of the sentences in this paper are grammatically correct.

Mathematically speaking, such an algorithm can be realized by a push-down automaton, PDA, (see e.g. Hopcroft, Motwani, and Ullman (2000)).

From the perspective of those computational differences, McMillan et al. (2005) have hypothesized that all quantifiers recruit the right inferior parietal cortex, which is associated with numerosity. Taking the distinction between the complexity of first-order and higher-order quantifiers for granted, they also predicted that only higher-order quantifiers recruit the prefrontal cortex, which is associated with executive resources, like working memory. In other words, they believe that the logical differences between first-order and higher-order quantifiers are also reflected in brain activity during processing quantifier sentences. This prediction was confirmed.

In our view the authors’ interpretation of their results is not convincing. Their experimental design may not provide the best means of differentiating between the neural bases of the various kinds of quantifiers. The main point of criticism is that the distinction between first-order and higher-order quantifiers does not coincide with the computational resources required to compute the meaning of quantifiers. There is a proper subclass of higher-order quantifiers, namely divisibility (parity) quantifiers, which corresponds — with respect to memory resources — to the same computational model as first-order quantifiers. In fact, most of the quantifiers identified in the research as higher-order quantifiers can be recognized by finite automata. Both “an even number” and “an odd number” are quantifiers recognized by two-state finite automata with a transition from the first state to the second and vice versa. In general, exactly the quantifiers definable in divisibility logic, $FO(D_n)$ (i.e. first-order logic enriched by all quantifiers “divisible by n”, for $n \geq 2$), are recognized by finite automata (FA) (Mostowski, 1998).

Theorem 2 A monadic quantifier Q is definable in the divisibility logic iff it can be recognized by a finite automaton.

Let us consider a relevant example. In the case of the automaton corresponding to “even” the initial state is also the accepting state. In the automaton for “odd” the other state is the accepting one. Intuitively, to check whether sentence (3) is true you do not need to count the number of false sentences and then compare it with that of the set of even integers.

3. An even number of the sentences in this paper is false.

You need only remember parity. For example when you find an false sentence you write “1” at the blackboard, if you find another one you erase “1” and put “0” again, then if you see another false sentence you put “1” in place of “0”, and so on. At every moment you have only one digit at the blackboard no matter how long is the paper. Compare with the automaton from Figure 3.

To sum up, first-order and higher-order quantifiers do not always differ with respect to the memory requirements. For example, “an even number of” is a higher-order quantifier that can still be recognized by a finite automaton. Therefore, differences in processing cannot be explained based solely on logical properties, as those are not enough fine grained. A more careful computational perspective — taking into account all mentioned results summed up in Table 1 — have to be applied to investigate quantifier comprehension. In what follows we present research exploring the subject empirically with respect to the computational model outlined in this section.

<table>
<thead>
<tr>
<th>expressibility</th>
<th>examples</th>
<th>recognized by</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>“all cars”, “at least 3 balls”</td>
<td>acyclic FA</td>
</tr>
<tr>
<td>parity</td>
<td>“an even number of balls”</td>
<td>FA</td>
</tr>
<tr>
<td>proportional</td>
<td>“most lawyers”</td>
<td>PDA</td>
</tr>
</tbody>
</table>

Table 1: Quantifiers, logics, and complexity of automata.

The Experiment

The study compares reaction times needed for the comprehension of different types of quantifiers. In particular, it improves upon the hypothesis of McMillan et al. (2005) by taking directly into account predictions of the computational model of quantifier comprehension and not only expressibility differences among quantifiers. Additionally, we compare two classes of quantifiers inside the first-order group: Aristotelian and cardinal quantifiers, relating to the very recent research of Troiani et al. (2009).

Procedure

General Idea First, we compared reaction time with respect to the following classes of quantifiers: those recognized by acyclic FA (first-order), those recognized by FA (parity), and those recognized by PDA (proportional). McMillan et al. (2005) did not report any data on differences between first-order and parity quantifiers. We predict that reaction time will increase along with the computational power needed to recognize quantifiers. Hence, parity quantifiers (even, odd) will take more time than first-order quantifiers (all, some) but not as long as proportional quantifiers (less than half, more than half).
Moreover, we have additionally compared Aristotelian quantifiers with cardinal quantifiers of higher rank, for instance “less than 8”. In the study of McMillan et al. (2005) only one cardinal quantifier of relatively small rank was taken into consideration, namely “at least 3”. We predict that complexity of the mental processing of cardinal quantifiers depends on the number of states in the relevant automata. Therefore, cardinal quantifiers of high rank should be more difficult than Aristotelian quantifiers (see Figure 2 for more explanation). Additionally, presumably the number of states in automata (size of memory needed) influences comprehension more directly than the use of loops. Hence, we hypothesize that the reaction time for the comprehension of cardinal quantifiers of higher rank is between that for parity and proportional quantifiers.

Participants Forty native Polish-speaking adults took part in this study. They were volunteers from the University of Warsaw undergraduate population. 19 of them were male and 21 were female. The mean age was 21.42 years (SD = 3.22) with a range of 18–30 years. Each participant was tested individually and was given a small financial reward for participation in the study.

Materials and Procedure The task consisted of eighty grammatically simple propositions in Polish containing a quantifier that probed a color feature of car on display. For example:

Niektóre samochody są czerwone.
Some cars are red.

Mniej niż połowa samochodów jest niebieska.
Less than half of the cars are blue.

Eighty color pictures presenting a car park with cars were constructed to accompany the propositions. The colors of the cars were red, blue, green, yellow, purple and black. Each picture contained fifteen objects in two colors (see Figure 4).

Eight different quantifiers divided into four groups were used in the study. The first group of quantifiers was first-order Aristotelian quantifiers (all, some); the second was parity quantifiers (odd, even); the third was first-order cardinal quantifiers of relatively high rank (less than 8, more than 7); and the fourth was proportional quantifiers (less than half, more than half) (see Table 2). Each quantifier was presented in 10 trials. Hence, there were in total 80 tasks in the study. The sentence matched the picture in half of the trials. Propositions with “less than 8”, “more than 7”, “less than half”, “more than half” were accompanied with a quantity of target items near the criterion for validating or falsifying the proposition. Therefore, these tasks required a precise judgment (e.g. seven targets in “less than half”). Debriefing following the experiment revealed that none of the participants had been aware that each picture consisted of exactly fifteen objects.

The experiment was divided into two parts: a short practice session followed immediately by the experimental session. Each quantifier problem was given one 15.5 s event. In the event the proposition and a stimulus array containing 15 randomly distributed cars were presented for 15000 ms followed by a blank screen for 500 ms. Subjects were asked to decide if the proposition was true at the presented picture. They responded by pressing the button with letter “P” if true and the button with letter “F” if false. The letters refer to first letters of Polish words for “true” and “false”.

The experiment was performed on a PC computer running E-Prime version 1.1.

Results

Analysis of Accuracy As we expected, the tasks were quite simple for our subjects and they made only a few mistakes. The percentage of correct answers for each group of quantifiers is presented in Table 2.

<table>
<thead>
<tr>
<th>Quantifier group</th>
<th>Examples</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristotelian FO</td>
<td>all, some</td>
<td>99</td>
</tr>
<tr>
<td>Parity</td>
<td>odd, even</td>
<td>91</td>
</tr>
<tr>
<td>Cardinal FO</td>
<td>less than 8, more than 7</td>
<td>92</td>
</tr>
<tr>
<td>Proportional</td>
<td>less than half, more than half</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 2: The percentage of correct answers for each group of quantifiers.

Comparison of Reaction Times To examine the differences in means we used repeated measures analysis of variance with type of quantifier (4 levels) as the within-subject factor. The assumption of normality was verified by the
Shapiro-Wilk test. Because the Mauchly’s test showed violation of sphericity, Greenhouse-Geiser adjustment was applied. Moreover, polynomial contrast analysis was performed for the within-subject factor. SPSS 14 was used for the analysis.

Table 3 presents mean (M) and standard deviation (SD) of the reaction time in milliseconds for each type of quantifier.

<table>
<thead>
<tr>
<th>Group</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristotelian FO</td>
<td>2257.50</td>
<td>471.95</td>
</tr>
<tr>
<td>Parity</td>
<td>5751.66</td>
<td>1240.41</td>
</tr>
<tr>
<td>Cardinal FO</td>
<td>6035.55</td>
<td>1071.89</td>
</tr>
<tr>
<td>Proportional</td>
<td>7273.46</td>
<td>1410.48</td>
</tr>
</tbody>
</table>

Table 3: Mean (M) and standard deviation (SD) of the reaction time in milliseconds for each type of quantifier.

We observed that the increase in reaction time was determined by the quantifier type \(F(2.4, 94.3) = 341.24, \ p < 0.001, \eta^2=0.90 \). Pairwise comparisons among means indicated that all four types of quantifiers differed significantly from one another \((p < 0.05) \). Polynomial contrast analysis showed the best fit for a linear trend \(F(1, 39) = 580.77, \ p < 0.001 \). The mean reaction time increased as follows: Aristotelian quantifiers, parity quantifiers, cardinal quantifiers, proportional quantifiers (see Figure 5).

![Figure 5: Average reaction times in each type of quantifiers in the first study.](image)

Discussion

Conclusions

We have been studying comprehension of natural language quantifiers from the perspective of simple, automata-theoretic computational models. Our investigation is a continuation of previous studies. In particular, it enriches and explains some data obtained by McMillan et al. (2005) and Troiani et al. (2009) with respect to reaction times. Our results support the following conclusions:

Plausibility of the Model The automata-theoretic model correctly predicts that quantifiers computable by finite-automata are easier to understand than quantifiers recognized by push-down automata. It improves results of McMillan et al. (2005), which compared only first-order quantifiers with higher-order quantifiers, putting in one group quantifiers recognized by finite-automata and those recognized by push-down automata.

Aristotelian, Cardinal, and Parity Quantifiers We have observed a significant difference in reaction time between Aristotelian and parity quantifiers, even though they are both recognized by finite automata. This difference may be accounted for by observing that the class of Aristotelian quantifiers is recognized by acyclic finite automata, whereas in the case of parity quantifiers we need loops. Therefore, loops are another example of computational resources having influence on the complexity of cognitive tasks. Moreover, we have shown that processing first-order cardinal quantifiers of high rank takes more time than comprehension of parity quantifiers. This suggests that the number of states in the relevant automaton plays an important role when judging the difficulty of a natural language construction. Arguably, the number of states required influences hardness more than the necessity of using cycles in the computation. These observations shed some light on the differences between numerical and logical quantifiers assessed in (Troiani et al., 2009).

Cognition and Complexity Last but not least, our research provides direct evidence for the claim that human linguistic abilities are constrained by computational resources (internal memory, number of states, loops).

Perspectives

There are many questions we leave for further research. Below we list a few of them.

Comprehension and Brain Even though we believe that computational properties are directly responsible for quantifier difficulty in natural language we are aware that our experiment does not support automata-theoretic account uniquely. However, our experimental setting can be used for neuropsychological study extending the one by McMillan et al. (2005). On the basis of our research and findings of McMillan et al. (2005) we predict that comprehension of parity quantifiers — but not first-order quantifiers — depends on executive resources that are mediated by dorsolateral prefrontal cortex. This would correspond to the difference between acyclic finite automata and finite automata. Further studies would contribute to extending our understanding of simple quantifier comprehension on Marr’s implementation level.
Comprehension Strategies What about Marr’s algorithmic level of explanation? It would be good to describe procedures actually used by our subjects to deal with comprehension. In principle it is possible to try to extract real algorithms by letting subjects manipulate the elements, tracking their behavior and then drawing some conclusions about their strategies. This is one of the possible future directions to enrich our experiments.

Comprehension and Working Memory Before starting any neuropsychological experiments it would be useful to measure memory involvement for different types of quantifiers using some classical methods known from cognitive psychology, like a dual-task paradigm combining a memory span measure with a concurrent processing task.

Comprehension Beyond Quantifiers Finally, the automata-theoretic model can be extended for other notions than simple quantifiers. For example, as it was already suggested by van Benthem (1987), by considering richer data structures it can account for conditionals, comparatives, compound expressions in natural language, non-elementary data structures it can account for conditionals, comparatives, compound expressions in natural language, non-elementary quantifiers, and quantifier interpretation. In Simon & Scholes (Eds.), Generalized quantifiers (pp. 31–71). Reidel Publishing Company.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2000). Introduction to automata theory, languages, and computation (2nd ed.). Addison Wesley.