Hydration layer dynamics and association mechanisms of food and antifreeze proteins

Brotzakis, Z.F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Hydration layer dynamics and association mechanisms of food and antifreeze proteins

A Molecular Dynamics and Transition Path Sampling study

Zacharias Faidon Brotzakis
Hydration layer dynamics and association mechanisms of food and antifreeze proteins

A Molecular Dynamics and Transition Path Sampling study

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof. dr. ir. K. I. J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 7 maart 2017, te 10.00 uur

door

Zacharias Faidon Brotzakis
geboren te Athene, Griekenland
Promotiecommissie

Promotor:

• prof. dr. P. G. Bolhuis (HIMS, Universiteit van Amsterdam)

Overige leden:

• prof. dr. H. J. Bakker (FOM institute AMOLF)
• prof. dr. D. Laage (École Normale Supérieure Paris)
• prof. dr. E. J. Meijer (HIMS, Universiteit van Amsterdam)
• prof. dr. L. Visscher (Vrije Universiteit Amsterdam)
• dr. I. K. Voets (Technische Universiteit Eindhoven)
• dr. J. Vreede (HIMS, Universiteit van Amsterdam)

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis was carried out at the Van ’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam (Science Park 904, 1098 XH, Amsterdam, The Netherlands) with financial support by NanoNextNL, a micro and nanotechnology consortium of the Government of The Netherlands and 130 partners.).
Contents

1 Introduction ... 7
 1.1 Proteins in nature and technology 7
 1.1.1 Protein function 7
 1.1.2 Food Proteins 8
 1.1.3 Ice binding and anti-freeze proteins 8
 1.2 Protein structure and interactions 9
 1.2.1 Structure of proteins 9
 1.2.2 Protein-protein interactions 10
 1.3 The role of solvent (water) and co-solutes (e.g. salts) on protein stability 13
 1.4 Protein association 16
 1.5 Molecular simulations 20
 1.6 Aim of the thesis 21
 1.7 Outline of the thesis 22

2 Methods ... 25
 2.1 Molecular Dynamics 26
 2.1.1 Molecular Dynamics of solvated proteins 29
 2.2 Rare Event methods 32
 2.3 Transition Path Sampling 32
 2.3.1 Monte Carlo of trajectories 34
 2.3.2 Shooting move 35

3 Dynamics of hydration water around native and misfolded α-lactalbumin 41
 3.1 Introduction .. 42
 3.2 Methods ... 43
 3.2.1 Simulation setup 43
3.2 Analysis
- 3.2.2 Analysis
- 3.2.3 Polarisation-resolved femtosecond infrared spectroscopy

3.3 Results and Discussion
- 3.3.1 Hydrogen bond dynamics
- 3.3.2 Reorientation dynamics

3.4 Conclusions

Appendices
- Appendix 3.A Water HB and reorientation dynamics analysis

4 Correlation between water structure and dynamics in the hydration layer of a type III ocean pout anti-freeze protein

4.1 Introduction

4.2 Methods
- 4.2.1 Simulation setup
- 4.2.2 Analysis

4.3 Results and Discussion
- 4.3.1 Water reorientation dynamics slows down at surface
- 4.3.2 Water reorientation dynamics differs locally
- 4.3.3 Hydration water structure
- 4.3.4 Structure - reorientation time correlation
- 4.3.5 Effect of dehydration

4.4 Conclusions

Appendices
- Appendix 4.A Water structure and dynamics for different temperatures and forcefields

5 Stability and growth mechanism of self-assembling anti-freeze cyclic peptides

5.1 Introduction

5.2 Methods
- 5.2.1 System setup
- 5.2.2 Molecular dynamics
- 5.2.3 Transition Path Sampling

5.3 Results and Discussion
- 5.3.1 Nanotube equilibrium properties
- 5.3.2 Mechanism of self-assembly by Transition Path Sampling
- 5.3.3 Analysis of the path ensemble