Hydration layer dynamics and association mechanisms of food and antifreeze proteins
A Molecular Dynamics and Transition Path Sampling study
Brotzakis, Z.F.

Publication date
2017
Document Version
Other version
License
Other

Citation for published version (APA):
Hydration layer dynamics and association mechanisms of food and antifreeze proteins

A Molecular Dynamics and Transition Path Sampling study

Zacharias Faidon Brotzakis
Hydration layer dynamics and association mechanisms of food and antifreeze proteins
A Molecular Dynamics and Transition Path Sampling study

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof. dr. ir. K. I. J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 7 maart 2017, te 10.00 uur

door

Zacharias Faidon Brotzakis
geboren te Athene, Griekenland
Promotiecommissie

Promotor:

• prof. dr. P. G. Bolhuis (HIMS, Universiteit van Amsterdam)

Overige leden:

• prof. dr. H. J. Bakker (FOM institute AMOLF)
• prof. dr. D. Laage (École Normale Supérieure Paris)
• prof. dr. E. J. Meijer (HIMS, Universiteit van Amsterdam)
• prof. dr. L. Visscher (Vrije Universiteit Amsterdam)
• dr. I. K. Voets (Technische Universiteit Eindhoven)
• dr. J. Vreede (HIMS, Universiteit van Amsterdam)

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis was carried out at the Van ’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam (Science Park 904, 1098 XH, Amsterdam, The Netherlands) with financial support by NanoNextNL, a micro and nanotechnology consortium of the Government of The Netherlands and 130 partners.).
Contents

1 Introduction 7
1.1 Proteins in nature and technology 7
1.1.1 Protein function 7
1.1.2 Food Proteins 8
1.1.3 Ice binding and anti-freeze proteins 8
1.2 Protein structure and interactions 9
1.2.1 Structure of proteins 9
1.2.2 Protein-protein interactions 10
1.3 The role of solvent (water) and co-solutes (e.g. salts) on protein stability 13
1.4 Protein association 16
1.5 Molecular simulations 20
1.6 Aim of the thesis 21
1.7 Outline of the thesis 22

2 Methods 25
2.1 Molecular Dynamics 26
2.1.1 Molecular Dynamics of solvated proteins 29
2.2 Rare Event methods 32
2.3 Transition Path Sampling 32
2.3.1 Monte Carlo of trajectories 34
2.3.2 Shooting move 35

3 Dynamics of hydration water around native and misfolded \(\alpha\)-lactalbumin 41
3.1 Introduction 42
3.2 Methods 43
3.2.1 Simulation setup 43
4 Correlation between water structure and dynamics in the hydration layer of a type III ocean pout anti-freeze protein

4.1 Introduction ... 75
4.2 Methods .. 77
 4.2.1 Simulation setup 77
 4.2.2 Analysis ... 78
4.3 Results and Discussion 81
 4.3.1 Water reorientation dynamics slows down at surface ... 81
 4.3.2 Water reorientation dynamics differs locally 82
 4.3.3 Hydration water structure 83
 4.3.4 Structure - reorientation time correlation 84
 4.3.5 Effect of dehydration 87
4.4 Conclusions ... 89

Appendices
 Appendix 4.A Water structure and dynamics for different temperatures and forcefields. 91

5 Stability and growth mechanism of self-assembling anti-freeze cyclic peptides

5.1 Introduction ... 100
5.2 Methods .. 101
 5.2.1 System setup 101
 5.2.2 Molecular dynamics 102
 5.2.3 Transition Path Sampling 103
5.3 Results and Discussion 105
 5.3.1 Nanotube equilibrium properties 105
 5.3.2 Mechanism of self-assembly by Transition Path Sampling ... 108
 5.3.3 Analysis of the path ensemble 111

Appendices
 Appendix 3.A Water HB and reorientation dynamics analysis. 62

Appendices
 Appendix 4.A Water structure and dynamics for different temperatures and forcefields. 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4</td>
<td>Comparison of the association time scales</td>
<td>115</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>117</td>
</tr>
<tr>
<td>Appendices</td>
<td>Appendix 5.A</td>
<td>Brute force MD and sequences of different nanotubes</td>
</tr>
<tr>
<td>6</td>
<td>Spring shooting, a novel efficient transition path sampling move</td>
<td>123</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>6.2</td>
<td>Methods</td>
<td>126</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Derivation of the spring shooting algorithm</td>
<td>126</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Simulation details</td>
<td>130</td>
</tr>
<tr>
<td>6.3</td>
<td>Results and Discussion</td>
<td>133</td>
</tr>
<tr>
<td>6.3.1</td>
<td>2D Langevin model</td>
<td>133</td>
</tr>
<tr>
<td>6.3.2</td>
<td>FF dimer association</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Dissociation of β-lactoglobulin dimer</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>145</td>
</tr>
<tr>
<td>Appendices</td>
<td>Appendix 6.A</td>
<td>Initialization of the β-lactoglobulin dimer paths</td>
</tr>
<tr>
<td>7</td>
<td>Elucidating the mechanism and role of solvent for β-lactoglobulin dimerization using Transition Path Sampling</td>
<td>151</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>7.2</td>
<td>Methods</td>
<td>153</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Molecular Dynamics</td>
<td>153</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Transition path sampling</td>
<td>154</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Analysis of the water dynamics</td>
<td>158</td>
</tr>
<tr>
<td>7.3</td>
<td>Results-Discussion</td>
<td>162</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Transition Path Sampling</td>
<td>162</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Hydration states of water</td>
<td>169</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusions</td>
<td>173</td>
</tr>
<tr>
<td>Appendices</td>
<td>Appendix 7.A</td>
<td>Initialization of paths /Analysis</td>
</tr>
</tbody>
</table>