SN2007bg : GMRT radio observations

Publication date
2009

Document Version
Final published version

Published in
The astronomer's telegram

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
SN2007bg: GMRT Radio observations

ATel #2133; Atish Kamble (U of Amsterdam), Sabyasachi Pal (U of Western Australia), Dipankar Bhattacharya (IUCAA), Ralph Wijers (U of Amsterdam) and Ishwara Chandra (NCRA) report on behalf of a larger collaboration on 16 Jul 2009; 23:20 UT

Password Certification: Atish Kamble (a.p.kamble@uva.nl)

Subjects: Radio, Gamma-Ray Bursts, Novae, Supernovae, Transients

The GMRT observed SN2007bg (Quimby et al. 2007, CBET #927; Prieto et al. GCN #9444; Soderberg A. M., ATel #2066) on 26th June and 1st July 2009 at 610 and 1280 MHz, respectively. The SN was not detected at 610 MHz to a three sigma upper limit of 225 microJy. The measured brightness of SN2007bg are as follows:

<table>
<thead>
<tr>
<th>date</th>
<th>Freq. (MHz)</th>
<th>days since discovery</th>
<th>Flux (mJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Jun 2009</td>
<td>610</td>
<td>~802</td>
<td>< 0.225 (3 sigma)</td>
</tr>
<tr>
<td>01 July 2009</td>
<td>1280</td>
<td>~806</td>
<td>1.2 +/- 0.14</td>
</tr>
</tbody>
</table>

The 'days since discovery' are estimated following Prieto et al. (GCN #9444). These results are indicative that the source is optical.

This message may be cited.

[Telegram Index]