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Instruction Sequence Based
Non-uniform Complexity Classes

Jan Bergstra1, Cornelis Middelburg1

Abstract

We present an approach to non-uniform complexity in which single-
pass instruction sequences play a key part, and answer various ques-
tions that arise from this approach. We introduce several kinds of
non-uniform complexity classes. One kind includes a counterpart of
the well-known non-uniform complexity class P/poly and another kind
includes a counterpart of the well-known non-uniform complexity class
NP/poly. Moreover, we introduce a general notion of completeness
for the non-uniform complexity classes of the latter kind. We also
formulate a counterpart of the well-known complexity theoretic conjec-
ture that NP 6⊆ P/poly. We think that the presented approach opens
up an additional way of investigating issues concerning non-uniform
complexity.

Keywords: non-uniform complexity class, single-pass instruction se-
quence, projective Boolean function family

1 Introduction

The aim of this paper is to draw attention to an approach to non-uniform
complexity which is based on the simple idea that each Boolean function
can be computed by a single-pass instruction sequence that contains only
instructions to read and write the contents of Boolean registers, forward
jump instructions, and a termination instruction.

In the first place, we introduce a kind of non-uniform complexity classes
which includes a counterpart of the classical non-uniform complexity class

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, Email: {J.A.Bergstra,C.A.Middelburg}@uva.nl.
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P/poly and formulate a counterpart of the well-known complexity theoretic
conjecture that NP 6⊆ P/poly. Some evidence for this conjecture is the
Karp-Lipton theorem [17]. The counterpart of the conjecture formulated in
this paper is called the non-uniform super-polynomial complexity conjecture.
The counterpart of P/poly is denoted by ISbr\poly.

Over and above that, we introduce a kind of non-uniform complexity
classes which includes a counterpart of the non-uniform complexity class
NP/poly and introduce a general notion of completeness for the complexity
classes of this kind. This general notion of completeness is defined using
reducibility relations that can be regarded as non-uniform variants of the
reducibility relation in terms of which NP-completeness is usually defined.
The counterpart of NP/poly is denoted by ISbr\\poly.

We show among other things that the complexity classes P/poly and
NP/poly coincide with the complexity classes ISbr\poly and ISbr\\poly, re-
spectively, and that a problem closely related to 3SAT, and used to formulate
the counterpart of the conjecture that NP 6⊆ P/poly, is NP-complete and
ISbr\\poly-complete.

In computer science, the meaning of programs usually plays a prominent
part in the explanation of many issues concerning programs. Moreover, what
is taken for the meaning of programs is mathematical by nature. Yet, it is
customary that practitioners do not fall back on the mathematical meaning
of programs in case explanation of issues concerning programs is needed.
They phrase their explanations from an empirical perspective. An empirical
perspective that we consider appealing is the perspective that a program is in
essence an instruction sequence and an instruction sequence under execution
produces a behaviour that is controlled by its execution environment in the
sense that each step of the produced behaviour actuates the processing of an
instruction by the execution environment and a reply returned at completion
of the processing determines how the behaviour proceeds.

An attempt to approach the semantics of programming languages from
the perspective mentioned above is made in [5]. The groundwork for the
approach is an algebraic theory of single-pass instruction sequences, called
program algebra, and an algebraic theory of mathematical objects that
represent the behaviours produced by instruction sequences under execution,
called basic thread algebra. The main advantages of the approach are
that it does not require a lot of mathematical background and that it is
more appealing to practitioners than the main approaches to programming
language semantics.
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As a continuation of the work on the above-mentioned approach to
programming language semantics, the notion of an instruction sequence
was subjected to systematic and precise analysis using the groundwork laid
earlier. This led among other things to expressiveness results about the
instruction sequences considered and variations of the instruction sequences
considered (see e.g. [11, 12]). As another continuation of the work on the
above-mentioned approach to programming language semantics, selected
issues relating to well-known subjects from the theory of computation and
the area of computer architecture were rigorously investigated thinking in
terms of instruction sequences (see e.g. [8, 9]). The general aim of the work
in both continuations mentioned is to bring instruction sequences as a theme
in computer science better into the picture. The work presented in this
paper forms a part of the last mentioned continuation.

The starting-point of program algebra is the perception of a program
as a single-pass instruction sequence, i.e. a finite or infinite sequence of
instructions of which each instruction is executed at most once and can
be dropped after it has been executed or jumped over. This perception
is simple, appealing, and links up with practice. The concepts underlying
the primitives of program algebra are common in programming, but the
particular form of the primitives is not common. The predominant concern
in the design of program algebra has been to achieve simple syntax and
semantics, while maintaining the expressive power of arbitrary finite control.

The objects considered in basic thread algebra represent in a direct way
the behaviours produced by instruction sequences under execution: upon each
action performed by such an object, a reply from an execution environment,
which takes the action as an instruction to be processed, determines how it
proceeds. The objects concerned are called threads. A thread may make use
of services, i.e. components of the execution environment. Once introduced
into threads and services, it is rather obvious that each Turing machine can
be simulated by means of a thread that makes use of a service. The thread
and service correspond to the finite control and tape of the Turing machine.

The approach to complexity followed in this paper is not suited to
uniform complexity. This is not considered a great drawback. Non-uniform
complexity is the relevant notion of complexity when studying what looks
to be the major complexity issue in practice: the scale-dependence of what
is an efficient solution for a computational problem.

This paper is organized as follows. First, we survey program algebra
and basic thread algebra (Section 2). Next, we survey an extension of basic
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thread algebra concerning the interaction of threads with services and give a
description of Boolean register services (Sections 3 and 4). Then, we introduce
the kind of complexity classes that includes ISbr\poly and formulate the non-
uniform super-polynomial complexity conjecture (Sections 5, 6 and 7). After
that, we introduce the kind of complexity classes that includes ISbr\\poly
and the notion of completeness for the non-uniform complexity classes of this
kind (Sections 8 and 9). We also introduce two additional kinds of complexity
classes suggested by the counterpart of 3SAT used to formulate the non-
uniform super-polynomial complexity conjecture (Section 10). Finally, we
make some concluding remarks (Section 11).

Some familiarity with classical computational complexity is assumed.
The relevant notions are explained in many textbooks, including [1, 3,
15]. Their precise definitions in different publications differ slightly. The
definitions of classical notions on which some results in this paper are based
are the ones from Chapters 1, 2 and 6 of [1].

This paper supersedes [7] and Section 5.2 of [10] in several respects.
Generalization of the definitions of the complexity classes ISbr\poly and
ISbr\\poly has put these complexity classes into a broader context, and a
major technical change has made it possible to simplify the material that is
concerned with the complexity class ISbr\\poly. Moreover, two additional
kinds of complexity classes are introduced, and various additional results
are given.

2 Program Algebra and Basic Thread Algebra

In this section, we survey PGA (ProGram Algebra) and BTA (Basic Thread
Algebra) and make precise in the setting of BTA which behaviours are
produced on execution by the instruction sequences considered in PGA.

In PGA, it is assumed that there is a fixed but arbitrary set A of basic
instructions. The intuition is that the execution of a basic instruction may
modify a state and produces a reply at its completion. The possible replies
are T and F. The actual reply is generally state-dependent. Therefore,
successive executions of the same basic instruction may produce different
replies. The set A is the basis for the set of instructions that may occur in
the instruction sequences considered in PGA. The elements of the latter set
are called primitive instructions.

PGA has the following primitive instructions:

• for each a ∈ A, a plain basic instruction a;



Instruction Sequence Based Non-uniform Complexity Classes 51

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for the set of all primitive instructions.

On execution of an instruction sequence, these primitive instructions
have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
T is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
inaction occurs;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of
+a, but execution always proceeds as if T is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction of the instruction sequence
concerned — if l equals 0 or there is no primitive instruction to
proceed with, inaction occurs;

• the effect of the termination instruction ! is that execution terminates.

PGA has one sort: the sort IS of instruction sequences. We make this
sort explicit to anticipate the need for many-sortedness later on. To build
terms of sort IS, PGA has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS→ IS ;

• the unary repetition operator ω : IS→ IS .
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Table 1: Axioms of PGA

(X ; Y ) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y )ω = X ; (Y ;X)ω PGA4

Terms of sort IS are built as usual. Throughout the paper, we assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use infix
notation for concatenation and postfix notation for repetition.

A closed PGA term is considered to denote a non-empty, finite or even-
tually periodic infinite sequence of primitive instructions.2 The instruction
sequence denoted by a closed term of the form P ; Q is the instruction
sequence denoted by P concatenated with the instruction sequence denoted
by Q. The instruction sequence denoted by a closed term of the form Pω is
the instruction sequence denoted by P concatenated infinitely many times
with itself.

Closed PGA terms are considered equal if they represent the same
instruction sequence. The axioms for instruction sequence equivalence are
given in Table 1. In this table, n stands for an arbitrary natural number
greater than 0. For each n > 0, the term Pn, where P is a PGA term, is
defined by induction on n as follows: P 1 = P and Pn+1 = P ; Pn. The
unfolding equation Xω = X ; Xω is derivable. Each closed PGA term is
derivably equal to a term in canonical form, i.e. a term of the form P or
P ;Qω, where P and Q are closed PGA terms in which the repetition operator
does not occur.

A typical model of PGA is the model in which:

• the domain is the set of all finite and eventually periodic infinite
sequences over the set I of primitive instructions;

• the operation associated with ; is concatenation;

• the operation associated with ω is the operation ω defined as follows:

– if U is a finite sequence, then Uω is the unique eventually periodic

2An eventually periodic infinite sequence is an infinite sequence with only finitely many
distinct suffixes.
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infinite sequence U ′ such that U concatenated n times with itself
is a proper prefix of U ′ for each n ∈ N;

– if U is an eventually periodic infinite sequence, then Uω is U .

To simplify matters, we confine ourselves to this model of PGA, which is an
initial model of PGA, for the interpretation of PGA terms. In the sequel,
we use the term instruction sequence for the elements of the domain of this
model, and we denote the interpretations of the constants and operators in
this model by the constants and operators themselves.

In the remainder of this paper, we consider instruction sequences that
can be denoted by closed PGA terms in which the repetition operator does
not occur. Below, we will make precise which behaviours are produced by
instruction sequences that can be denoted by closed PGA terms in which
the repetition operator does not occur.

First, we survey BTA, an algebraic theory of mathematical objects
which represent in a direct way the behaviours produced by instruction
sequences under execution.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions,
with tau 6∈ A, has been given. Besides, tau is a special basic action. We
write Atau for A ∪ {tau}.

The objects considered in BTA are called threads. A thread represents
a behaviour which consists of performing basic actions in a sequential fashion.
Upon each basic action performed, a reply from an execution environment
determines how the thread proceeds. The possible replies are the Boolean
values T and F. Performing tau, which is considered performing an internal
action, will always lead to the reply T.

BTA has one sort: the sort T of threads. We make this sort explicit to
anticipate the need for many-sortedness later on. To build terms of sort T,
BTA has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

• for each α ∈ Atau, the binary postconditional composition operator
�α� : T×T→ T.

Terms of sort T are built as usual. Throughout the paper, we assume that
there are infinitely many variables of sort T, including x, y, z. We use infix
notation for postconditional composition.
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Table 2: Axiom of BTA

x� tau� y = x� tau� x T1

We introduce basic action prefixing as an abbreviation: α ◦ p, where p
is a BTA term, abbreviates p�α� p. We identify expressions of the form
α ◦ p with the BTA term they stand for.

The thread denoted by a closed term of the form p �α� q will first
perform α, and then proceed as the thread denoted by p if the reply from
the execution environment is T and proceed as the thread denoted by q if
the reply from the execution environment is F. The thread denoted by D
will become inactive and the thread denoted by S will terminate.

BTA has only one axiom. This axiom is given in Table 2. Using
the abbreviation introduced above, axiom T1 can be written as follows:
x� tau� y = tau ◦ x.

Each closed BTA term denotes a finite thread, i.e. a thread with a finite
upper bound to the number of basic actions that it can perform. Infinite
threads, i.e. threads without a finite upper bound to the number of basic
actions that it can perform, can be defined by means of a set of recursion
equations (see e.g. [6]). Regular threads, i.e. finite or infinite threads that
can only be in a finite number of states, can be defined by means of a finite
set of recursion equations.

The behaviours of the instruction sequences denoted by closed PGA
terms are considered to be regular threads, with the basic instructions taken
for basic actions. All regular threads in which tau does not occur represent
behaviours of instruction sequences that can be denoted by closed PGA
terms (see Proposition 2 in [21]). Closed PGA terms in which the repetition
operator does not occur correspond to finite threads.

Henceforth, we will write PGAfin for PGA without the repetition op-
erator and axioms PGA2–PGA4, and we will write ISfin for the set of all
instruction sequences that can be denoted by closed PGAfin terms. Moreover,
we will write length(U), where U ∈ ISfin, for the length of U .

We combine PGAfin with BTA and extend the combination with the
thread extraction operator | | : IS→ T and the axioms given in Table 3. In
this table, a stands for an arbitrary basic instruction from A, u stands for an
arbitrary primitive instruction from I, and l stands for an arbitrary natural
number.

For each closed PGAfin term P , |P | denotes the behaviour produced
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Table 3: Axioms for the thread extraction operator

|a| = a ◦ D
|a ;X| = a ◦ |X|
|+a| = a ◦ D
|+a ;X| = |X|�a� |#2 ;X|
|−a| = a ◦ D
|−a ;X| = |#2 ;X|�a� |X|

|#l| = D

|#0 ;X| = D

|#1 ;X| = |X|
|#l + 2 ; u| = D

|#l + 2 ; u ;X| = |#l + 1 ;X|
|!| = S

|! ;X| = S

by the instruction sequence denoted by P under execution. The use of a
closed PGAfin term is sometimes preferable to the use of the corresponding
closed BTA term because thread extraction can give rise to a combinatorial
explosion. For instance, suppose that p is a closed BTA term such that

p = |
k ×︷ ︸︸ ︷

+a ; +b ; . . . ; +a ; +b ; c ; !| .

Then the size of p is greater than 2k/2.

3 Interaction of Threads with Services

A thread may perform a basic action for the purpose of requesting a named
service provided by an execution environment to process a method and to
return a reply to the thread at completion of the processing of the method.
In this section, we survey the extension of BTA with services and operators
that are concerned with this kind of interaction between threads and services.

It is assumed that a fixed but arbitrary set F of foci has been given. Foci
play the role of names of the services provided by an execution environment.
It is also assumed that a fixed but arbitrary set M of methods has been
given. For the set A of basic actions, we take the set {f.m | f ∈ F ,m ∈M}.
Performing a basic action f.m is taken as making a request to the service
named f to process method m.

A service is able to process certain methods. The processing of a method
may involve a change of the service. The reply value produced by the service
at completion of the processing of a method is either T, F or B. The special
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reply B, standing for blocked, is used to deal with the situation that a service
is requested to process a method that it is not able to process.

The following is assumed with respect to services:

• a many-sorted signature ΣS has been given that includes the following
sorts:

– the sort S of services;

– the sort R of replies;

and the following constants and operators:

– the empty service constant δ :→ S;

– the reply constants T,F,B :→R;

– for each m ∈M, the derived service operator ∂
∂m : S→ S;

– for each m ∈M, the service reply operator %m : S→ R;

• a minimal ΣS-algebra S has been given in which T, F, and B are
mutually different, and

–
∧
m∈M

∂
∂m(z) = z ∧ %m(z) = B ⇒ z = δ holds;

– for each m ∈M, ∂
∂m(z) = δ ⇔ %m(z) = B holds.

The intuition concerning ∂
∂m and %m is that on a request to service S

to process method m:

• if %m(S) 6= B, S processes m, produces the reply %m(S), and then
proceeds as ∂

∂m(S);

• if %m(S) = B, S is not able to process method m and proceeds as δ.

The empty service δ itself is unable to process any method.
We introduce the following additional operators:

• for each f ∈ F , the binary use operator /f : T× S→ T;

• for each f ∈ F , the binary apply operator •f : T× S→ S.

We use infix notation for the use and apply operators.
The thread denoted by a closed term of the form p /f S and the service

denoted by a closed term of the form p •f S are the thread and service,
respectively, that result from processing the method of each basic action of
the form f.m that the thread denoted by p performs by the service denoted
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Table 4: Axioms for the use operators

S /f S = S U1

D /f S = D U2

(tau ◦ x) /f S = tau ◦ (x /f S) U3

(x� g.m� y) /f S = (x /f S) � g.m� (y /f S) if f 6= g U4

(x� f.m� y) /f S = tau ◦ (x /f
∂

∂m (S)) if %m(S) = T U5

(x� f.m� y) /f S = tau ◦ (y /f
∂

∂m (S)) if %m(S) = F U6

(x� f.m� y) /f S = tau ◦ D if %m(S) = B U7

Table 5: Axioms for the apply operators

S •f S = S A1

D •f S = δ A2

(tau ◦ x) •f S = x •f S A3

(x� g.m� y) •f S = δ if f 6= g A4

(x� f.m� y) •f S = x •f ∂
∂mS if %m(S) = T A5

(x� f.m� y) •f S = y •f ∂
∂mS if %m(S) = F A6

(x� f.m� y) •f S = δ if %m(S) = B A7

by S. When the method of a basic action of the form f.m performed by a
thread is processed by a service, the service changes in accordance with the
method concerned and affects the thread as follows: the basic action turns
into the internal action tau and the two ways to proceed reduce to one on
the basis of the reply value produced by the service.

The axioms for the use operators are given in Table 4 and the axioms
for the apply operators are given in Table 5. In these tables, f and g stand
for arbitrary foci from F , m stands for an arbitrary method from M, and
S stands for an arbitrary term of sort S. The axioms simply formalize the
informal explanation given above and in addition stipulate what is the result
of use and apply if inappropriate foci or methods are involved.

The extension of BTA described in this section is a simple version of
the extension of BTA presented in [9]. We have chosen to use the former
extension because it is adequate to the purpose of this paper and it allows a
terser survey.
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4 Instruction Sequences Acting on Boolean Reg-
isters

In our approach to computational complexity, instruction sequences that
act on Boolean registers play a key part. Preceding the presentation of
this approach, we describe in this section services that make up Boolean
registers, introduce special foci that serve as names of Boolean registers, and
describe the instruction sequences that matter to the kinds of complexity
classes introduced in this paper.

First, we describe services that make up Boolean registers. The Boolean
register services are able to process the following methods:

• the set to true method set:T;

• the set to false method set:F;

• the get method get.

We write Mbr for the set {set:T, set:F, get}. It is assumed that Mbr ⊆M.
The methods that Boolean register services are able to process can be

explained as follows:

• set:T : the contents of the Boolean register becomes T and the reply is
T;

• set:F : the contents of the Boolean register becomes F and the reply is
F;

• get : nothing changes and the reply is the contents of the Boolean
register.

For ΣS , we take the signature that consists of the sorts, constants and
operators that are mentioned in the assumptions with respect to services
made in Section 3 and a constant BRb of sort S for each b ∈ B.

For S, we take a minimal ΣS-algebra that satisfies the conditions that
are mentioned in the assumptions with respect to services made in Section 3
and the following conditions for each b ∈ B:

∂
∂set:T(BRb) = BRT ,

∂
∂set:F(BRb) = BRF ,

%set:T(BRb) = T ,

%set:F(BRb) = F ,

∂
∂get(BRb) = BRb ,

∂
∂m(BRb) = δ if m /∈ {set:T, set:F, get} ,

%get(BRb) = b ,

%m(BRb) = B if m /∈ {set:T, set:F, get} .
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In the instruction sequences which concern us in the remainder of this
paper, a number of Boolean registers is used as input registers, a number of
Boolean registers is used as auxiliary registers, and one Boolean register is
used as output register.

It is assumed that in:1, in:2, . . . ∈ F , aux:1, aux:2, . . . ∈ F , and out ∈ F .
These foci play special roles:

• for each i ∈ N+, in:i serves as the name of the Boolean register that is
used as ith input register in instruction sequences;

• for each i ∈ N+, aux:i serves as the name of the Boolean register that
is used as ith auxiliary register in instruction sequences;

• out serves as the name of the Boolean register that is used as output
register in instruction sequences.

Henceforth, we will write Fin for {in:i | i ∈ N+} and Faux for {aux:i | i ∈ N+}.
ISbr is the set of all instruction sequences from ISfin in which all plain

basic instructions, positive test instructions and negative test instructions
contain only basic instructions from the set

{f.get | f ∈ Fin ∪ Faux} ∪ {f.set:b | f ∈ Faux ∪ {out} ∧ b ∈ B} ;

ISbr is the set of all instruction sequences from ISfin that matter to the kinds
of complexity classes which will be introduced in this paper.

For each k, l ∈ N, we will write ISk,lbr for the set of all X ∈ ISbr that
satisfy:

• primitive instructions of the forms aux:i.m, +aux:i.m and
−aux:i.m with i > k do not occur in X;

• primitive instructions of the form #l′ with l′ > l do not
occur in X.

Moreover, for each k ∈ N, we will write ISkbr for the set
⋃
l∈N ISk,lbr . Hence,

IS0
br is the set of all instruction sequences from ISbr in which no auxiliary

registers are used, and IS0,0
br is the set of all instruction sequences from IS0

br

in which jump instructions do not occur.
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5 The Complexity Classes IS\F

In this section, we introduce a kind of non-uniform complexity classes which
includes a counterpart of the complexity class P/poly in the setting of
single-pass instruction sequences.

The counterpart of P/poly defined in this section is denoted by ISbr\poly.
Because it is isomorphic to the complexity class P/poly, we could have
decided to loosely denote this complexity class by P/poly as well. The
reason why we decided not to denote it by P/poly finds its origin in what
we want to achieve with this paper: illustrating an approach to non-uniform
complexity in which single-pass instruction sequences play a key part. We
reserve the use of the name P/poly to where results obtained in the setting
of Turing machines or the setting of Boolean circuits are involved.

In the field of computational complexity, it is quite common to study the
complexity of computing functions on finite strings over a binary alphabet.
Since strings over an alphabet of any fixed size can be efficiently encoded
as strings over a binary alphabet, it is sufficient to consider only a binary
alphabet. We adopt the set B as preferred binary alphabet.

An important special case of functions on finite strings over a binary
alphabet is the case where the value of functions is restricted to strings
of length 1. Such a function is often identified with the set of strings of
which it is the characteristic function. The set in question is usually called a
language or a decision problem. The identification mentioned above allows
of looking at the problem of computing a function f :B∗ → B as the problem
of deciding membership of the set {w ∈ B∗ | f(w) = T}.

With each function f : B∗ → B, we can associate an infinite sequence
〈fn〉n∈N of functions, with fn : Bn → B for every n ∈ N, such that fn is
the restriction of f to Bn for each n ∈ N. The complexity of computing
such sequences of functions, which we call Boolean function families, by
instruction sequences is our concern in the remainder of this paper. One
of the classes of Boolean function families with which we concern us is
ISbr\poly, the class of all Boolean function families that can be computed
by polynomial-length instruction sequences from ISbr.

An n-ary Boolean function is a function f : Bn → B, and a Boolean
function family is an infinite sequence 〈fn〉n∈N of functions, where fn is an
n-ary Boolean function for each n ∈ N.

A Boolean function family 〈fn〉n∈N can be identified with the unique
function f :B∗ → B such that for each n ∈ N, for each w ∈ Bn, f(w) = fn(w).
Considering sets of Boolean function families as complexity classes looks
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to be most natural when studying non-uniform complexity. We will make
the identification mentioned above only where connections with classical
complexity classes such as P/poly are made.

Let n ∈ N, let f : Bn → B, and let X ∈ ISbr. Then X computes f if
there exists an l ∈ N such that for all b1, . . . , bn ∈ B:

(. . . ((. . . (|X| /aux:1 BRF) . . . /aux:l BRF) /in:1 BRb1) . . . /in:n BRbn) •out BRF

= BRf(b1,...,bn) .
3

Moreover, let IS ⊆ ISbr and F ⊆ {h | h : N→ N}. Then IS\F is the class of
all Boolean function families 〈fn〉n∈N that satisfy:

there exists an h ∈ F such that for all n ∈ N there exists an
X ∈ IS such that X computes fn and length(X) ≤ h(n).

Henceforth, we will write poly for {h | h : N→ N ∧ h is polynomial}. We
are primarily interested in the complexity class ISbr\poly,4 but we will also
pay attention to other instantiations of the general definition just given.

The question arises whether all n-ary Boolean functions can be computed
by an instruction sequence from ISbr. This question can answered in the
affirmative. They can even be computed, without using auxiliary Boolean
registers, by an instruction sequence that contains no other jump instructions
than #2.

Theorem 1 For each n ∈ N, for each n-ary Boolean function f : Bn → B,
there exists an X ∈ IS0

br in which no other jump instruction than #2 occurs
such that X computes f and length(X) = O(2n).5

Proof: Let inseqn be the function from the set of all n-ary Boolean
function f : Bn → B to IS0

br defined by induction on n as follows:

inseq0(f) =

{
−out.set:T ; #2 ; ! if f() = T

+out.set:F ; #2 ; ! if f() = F ,

inseqn+1(f) = −in:n+1.get ; #2 ; inseqn(fT) ; inseqn(fF) ,

3In the extension of BTA presented in [9], which has a sort of (named) service families
and a service family composition operator (⊕), the left-hand side of this equation can be
written as follows: (|X| / ((⊕n

i=1 in:i.BRbi)⊕ (⊕l
j=1 aux:j.BRF))) • out.BRF.

4In precursors of this paper, the temporary name P∗ is used for the complexity class
ISbr\poly (see e.g. [7]).

5Theorem 1 sharpens the result found in precursors of this paper (see e.g. [7]). We owe
the sharpened result to Inge Bethke from the University of Amsterdam.
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where for each f : Bn+1 → B and b ∈ B, fb : Bn → B is defined as follows:

fb(b1, . . . , bn) = f(b1, . . . , bn, b) .

It is easy to prove by induction on n that |#2 ; inseqn(fT) ;X| = |X|. Using
this fact, it is easy to prove by induction on n that inseqn(f) computes f .
Moreover, it is easy to see that length(inseqn(f)) = O(2n). 2

Henceforth, we will use the notation IS\O(f(n)) for the complexity
class IS\ {h | h : N→ N ∧ h(n) = O(f(n))}. This notation is among other
things used in the following corollary of Theorem 1.

Corollary 1 All Boolean function families belong to IS0
br\O(2n).

In the proof of Theorem 1, the instruction sequences yielded by the
function inseqn contain the jump instruction #2. Each occurrence of #2
belongs to a jump chain ending in the instruction sequence −out.set:T ; #2 ; !
or the instruction sequence +out.set:F ; #2 ; !. Therefore, each occurrence of
#2 can safely be replaced by the instruction +out.set:F, which like #2 skips
the next instruction. This leads to the following corollary.

Corollary 2 IS0,0
br \O(2n) = IS0

br\O(2n) = ISbr\O(2n).

We consider the proof of Theorem 1 once again. Because the content
of the Boolean register concerned is initially F, the question arises whether
out.set:F can be dispensed with in instruction sequences computing Boolean
functions. This question can be answered in the affirmative if we permit the
use of auxiliary Boolean registers.

Theorem 2 Let n ∈ N, let f : Bn → B, and let X ∈ ISbr be such that X
computes f . Then there exists a Y ∈ ISbr in which the basic instruction
out.set:F does not occur such that Y computes f and length(Y ) is linear in
length(X).

Proof: Let o ∈ N+ be such that the basic instructions aux:o.set:T,
aux:o.set:F, and aux:o.get do not occur in X. Let X ′ be obtained from
X by replacing each occurrence of the focus out by aux:o. Suppose that
X ′ = u1 ; . . . ; uk. Let Y be obtained from u1 ; . . . ; uk as follows:

1. stop if u1 ≡ !;

2. stop if there exists no j ∈ [2, k] such that uj−1 6≡ out.set:T and uj ≡ !;
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3. find the least j ∈ [2, k] such that uj−1 6≡ out.set:T and uj ≡ !;

4. replace uj by +aux:o.get ; out.set:T ; !;

5. for each i ∈ [1, k], replace ui by #l+2 if ui ≡ #l and i < j < i+ l;

6. repeat the preceding steps for the resulting instruction sequence.

It is easy to prove by induction on k that the Boolean function computed
by X and the Boolean function computed by Y are the same. Moreover, it
is easy to see that length(Y ) < 3 · length(X). Hence, length(Y ) is linear in
length(X). 2

The following proposition gives an upper bound for the number of
instruction sequences from ISk−1,k−1

br of length k that compute an n-ary
Boolean function. From each instruction sequence from ISbr of length k
that computes an n-ary Boolean function, we can obtain an instruction
sequence from ISk−1,k−1

br of length k that computes the same n-ary Boolean
function by replacement of the primitive instructions that are not permitted
in ISk−1,k−1

br . Moreover, each n-ary Boolean function that can be computed
by an instruction sequence from ISbr of length less than k, can also be
computed by an instruction sequence from ISbr of length k.

Proposition 1 For each k ∈ N+ and n ∈ N, the number of instruction
sequences from ISk−1,k−1

br of length k that compute an n-ary Boolean function
is not greater than (3n+ 10k − 2)k.

Proof: The set of basic instructions from which the plain basic in-
structions, positive test instructions and negative test instructions occur-
ring in the instruction sequences concerned are built consists of n basic
instructions of the form in:i.get, k − 1 basic instructions of each of the
forms aux:i.set:T, aux:i.set:F and aux:i.get, and the two basic instructions
out.set:T and out.set:F. Moreover, there are k different jump instructions
that may occur and one termination instruction. This means that there are
3(n+ 3(k−1) + 2) +k+ 1 = 3n+ 10k−2 different primitive instructions that
may occur in these instruction sequences. Hence, the number of instruction
sequences concerned is not greater than (3n+ 10k − 2)k. 2

Theorem 1 states that all n-ary Boolean functions can be computed
by an instruction sequence from ISbr whose length is exponential in n. The
following theorem shows that, for large enough n, not all n-ary Boolean
functions can be computed by an instruction sequence from ISbr whose
length is polynomial in n.
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Theorem 3 For each n ∈ N with n > 11, there exists a n-ary Boolean func-
tion f : Bn → B such that, for each X ∈ ISbr that computes f , length(X) >
b2n/nc.

Proof: Let n ∈ N be such that n > 11. By Proposition 1 and the remarks
immediately preceding Proposition 1, the number of n-ary Boolean functions
that can be computed by instruction sequences from ISbr of length less
than or equal to k is not greater than (3n + 10k − 2)k. For k = b2n/nc,
this number is not greater than (3n + 10b2n/nc − 2)b2

n/nc. We have that
(3n + 10b2n/nc − 2)b2

n/nc ≤ (3n + 10(2n/n) − 2)2n/n < (11(2n/n))2n/n =
(11/n)2n/n · (2n)2n/n = (11/n)2n/n · 2(2n) < 2(2n). Here, we have used the
given that n > 11 in the second step and the last step. So there exist less
than 2(2n) n-ary Boolean functions that can be computed by instruction
sequences from ISbr of length less than or equal to b2n/nc, whereas there
exist 2(2n) n-ary Boolean functions. Hence, there exists an n-ary Boolean
function that cannot be computed by an instruction sequence from ISbr of
length less than or equal to b2n/nc. 2

Theorem 3 gives rise to the following corollary concerning ISbr\poly.

Corollary 3 ISbr\poly ⊂ ISbr\O(2n).

Theorem 3 will be used in the proof of the following hierarchy theorem
for ISbr\poly.

Theorem 4 For each k ∈ N, ISbr\O(nk) ⊂ ISbr\O(nk+1).

Proof: Let 〈fn〉n∈N be a Boolean function family such that, for each
n > 11, for each X ∈ ISbr that computes fn, length(X) > b2n/nc.
Such a Boolean function family exists by Theorem 3. Let k ∈ N,
and let 〈gn〉n∈N be the Boolean function family such that, for each
n ∈ N, gn(b1, . . . , bn) = fn(b1, . . . , bn) if n < 2k+3 and gn(b1, . . . , bn) =
fdlog((k+2)nk+1)e(b1, . . . , bdlog((k+2)nk+1)e) if n ≥ 2k+3. Then 〈gn〉n∈N ∈
ISbr\O(nk+1) by Theorem 1. Moreover, for each n ≥ 2k+3, for each Y ∈ ISbr

that computes gn, length(Y ) > b2dlog((k+2)nk+1)e/dlog((k + 2)nk+1)ec ≥
b2log((k+2)nk+1)/(log((k + 2)nk+1) + 1)c ≥ b(k + 2)nk+1/(k + 2) log(n)c =
bnk+1/ log(n)c. Here, we have used the given that n ≥ 2k+3 in the last
step but one. From the fact that, for all m ∈ N, there exists an n ∈ N
such that n > m log(n), it follows that not bnk+1/ log(n)c = O(nk). Hence,
〈gn〉n∈N /∈ ISbr\O(nk). 2

As a corollary of the general definition of the non-uniform complexity
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classes IS\F , the fact that poly =
⋃
k∈N

{
h | h : N→ N ∧ h(n) = O(nk)

}
,

and Theorem 4, we have the following result.

Corollary 4 For each k ∈ N, ISbr\poly 6⊆ ISbr\O(nk).

6 Instruction Sequences, Boolean Formulas and
Circuits

In this section, we investigate connections of single-pass instruction sequences
with Boolean formulas and Boolean circuits which are relevant to non-uniform
complexity and show that ISbr\poly coincides with P/poly. The definitions
of Boolean circuits, P/poly and related notions on which some results in this
section and the coming ones are based are the definitions from Chapter 6
of [1].

First, we dwell on obtaining instruction sequences that compute the
Boolean functions induced by Boolean formulas from the Boolean formulas
concerned.

Hereafter, we will write φ(b1, . . . , bn), where φ is a Boolean formula
containing the variables v1, . . . , vn and b1, . . . , bn ∈ B, to indicate that φ is
satisfied by the assignment σ to the variables v1, . . . , vn defined by σ(v1) = b1,
. . . , σ(vn) = bn.

Let φ be a Boolean formula containing the variables v1, . . . , vn. Then
the Boolean function induced by φ is the n-ary Boolean function f defined
by f(b1, . . . , bn) = T iff φ(b1, . . . , bn).

The Boolean function induced by a CNF-formula can be computed,
without using auxiliary Boolean registers, by an instruction sequence that
contains no other jump instructions than #2 and whose length is linear in
the size of the CNF-formula.

Proposition 2 For each CNF-formula φ, there exists an X ∈ IS0
br in which

no other jump instruction than #2 occurs such that X computes the Boolean
function induced by φ and length(X) is linear in the size of φ.

Proof: Let inseqcnf be the function from the set of all CNF-formulas
containing the variables v1, . . . , vn to IS0

br defined as follows:
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inseqcnf(
∧
i∈[1,m]

∨
j∈[1,ni]

ξij) =

inseq ′cnf(ξ11) ; . . . ; inseq ′cnf(ξ1n1) ; +out.set:F ; #2 ; !;
...

inseq ′cnf(ξm1) ; . . . ; inseq ′cnf(ξmnm) ; +out.set:F ; #2 ; ! ; +out.set:T ; ! ,

where

inseq ′cnf(vk) = +in:k.get ; #2 ,

inseq ′cnf(¬ vk) = −in:k.get ; #2 .

It is easy to see that no other jump instruction than #2 occurs in inseqcnf(φ).
Recall that a disjunction is satisfied if one of its disjuncts is satisfied and a
conjunction is satisfied if each of its conjuncts is satisfied. Using these facts,
it is easy to prove by induction on the number of clauses in a CNF-formula,
and in the basis step by induction on the number of literals in a clause, that
inseqcnf(φ) computes the Boolean function induced by φ. Moreover, it is
easy to see that length(inseqcnf(φ)) is linear in the size of φ. 2

In the proof of Proposition 2, it is shown that the Boolean function in-
duced by a CNF-formula can be computed, without using auxiliary Boolean
registers, by an instruction sequence that contains no other jump instruc-
tions than #2. However, the instruction sequence concerned contains the
termination instruction more than once and both out.set:T and out.set:F.
This raises the question whether further restrictions are possible. We have a
negative result.

Proposition 3 Let φ be the Boolean formula v1 ∧ v2 ∧ v3. Then there does
not exist an X ∈ IS0,0

br in which the termination instruction does not occur
more than once and the basic instruction out.set:F does not occur such that
X computes the Boolean function induced by φ.

Proof: Suppose that X = u1 ; . . . ;uk is an instruction sequence from IS0,0
br

satisfying the restrictions and computing the Boolean function induced by φ.
Consider the smallest l ∈ [1, k] such that ul is either out.set:T, +out.set:T
or −out.set:T (there must be such an l). Because φ is not satisfied by all
assignments to the variables v1, v2, v3, it cannot be the case that l = 1. In
the case where l > 1, for each i ∈ [1, l − 1], ui is either in:j.get, +in:j.get or
−in:j.get for some j ∈ {1, 2, 3}. This implies that, for each i ∈ [0, l−1], there
exists a basic Boolean formula ψi over the variables v1, v2, v3 that is unique up
to logical equivalence such that, for each b1, b2, b3 ∈ B, if the initial states of
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the Boolean registers named in:1, in:2 and in:3 are b1, b2 and b3, respectively,
then ui+1 will be executed iff ψi(b1, b2, b3). We have that ψ0 ⇔ T and, for
each i ∈ [1, l − 1], ψi ⇔ (ψi−1 ⇒ T) if ui ≡ in:j.get, ψi ⇔ (ψi−1 ⇒ vj) if
ui ≡ +in:j.get, and ψi ⇔ (ψi−1 ⇒ ¬ vj) if ui ≡ −in:j.get. Hence, for each
i ∈ [0, l − 1], ψi ⇒ φ implies T ⇒ φ or vj ⇒ φ or ¬ vj ⇒ φ for some
j ∈ {1, 2, 3}. Because the latter three Boolean formulas are no tautologies,
ψi ⇒ φ is no tautology either. This means that, for each i ∈ [1, l − 1],
ψi ⇒ φ is not satisfied by all assignments to the variables v1, v2, v3. Hence,
X cannot exist. 2

According to Proposition 2, the Boolean function induced by a CNF-
formula can be computed, without using auxiliary Boolean registers, by an
instruction sequence that contains no other jump instructions than #2 and
whose length is linear in the size of the formula. If we permit arbitrary jump
instructions, this result generalizes from CNF-formulas to arbitrary basic
Boolean formulas, i.e. Boolean formulas in which no other connectives than
¬ , ∨ and ∧ occur.

Proposition 4 For each basic Boolean formula φ, there exists an X ∈ IS0
br

in which the basic instruction out.set:F does not occur such that X computes
the Boolean function induced by φ and length(X) is linear in the size of φ.

Proof: Let inseqbf be the function from the set of all basic Boolean
formulas containing the variables v1, . . . , vn to IS0

br defined as follows:

inseqbf(φ) = inseq ′bf(φ) ; +out.set:T ; ! ,

where

inseq ′bf(vk) = +in:k.get ,

inseq ′bf(¬ φ) = inseq ′bf(φ) ; #2 ,

inseq ′bf(φ ∨ ψ) = inseq ′bf(φ) ; #length(inseq ′bf(ψ))+1 ; inseq ′bf(ψ) ,

inseq ′bf(φ ∧ ψ) = inseq ′bf(φ) ; #2 ; #length(inseq ′bf(ψ))+2 ; inseq ′bf(ψ) .

Using the same facts about disjunctions and conjunctions as in the proof
of Proposition 2, it is easy to prove by induction on the structure of φ that
inseqbf(φ) computes the Boolean function induced by φ. Moreover, it is easy
to see that length(inseqbf(φ)) is linear in the size of φ. 2

In the next proposition, we consider Boolean circuits instead of Boolean
formulas.
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Let C be a Boolean circuit with n input nodes and a single output node.
Then the Boolean function induced by C is the n-ary Boolean function f
defined by f(b1, . . . , bn) = C(b1, . . . , bn), where C(b1, . . . , bn) denotes the
output of C on input (b1, . . . , bn).

Because Boolean formulas can be looked upon as Boolean circuits with
a single output node in which all gates have out-degree 1, the question arises
whether Proposition 4 generalizes from Boolean formulas to Boolean circuits
with a single output node. This question can be answered in the affirmative
if we permit the use of auxiliary Boolean registers.

Proposition 5 For each Boolean circuit C with a single output node that
contains no other gates than ¬ -gates, ∨-gates and ∧-gates, there exists an
X ∈ ISbr in which the basic instruction out.set:F does not occur such that X
computes the Boolean function induced by C and length(X) is linear in the
size of C.

Proof: Let inseqbc be the function from the set of all Boolean circuits
with input nodes in1, . . . , inn, gates g1, . . . , gm and a single output node out
to IS0

br defined as follows:

inseqbc(C) = inseq ′bc(g1) ; . . . ; inseq ′bc(gm) ; +aux:m.get ; +out.set:T ; ! ,

where

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; +aux:k.set:T

if gk is a ¬ -gate with direct preceding node p ,

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; inseq ′′bc(p
′) ; +aux:k.set:T

if gk is a ∨-gate with direct preceding nodes p and p′ ,

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; #3 ; inseq ′′bc(p
′) ; +aux:k.set:T

if gk is a ∧-gate with direct preceding nodes p and p′ ,

and
inseq ′′bc(ink) = +in:k.get ,

inseq ′′bc(gk) = +aux:k.get .

Using the same facts about disjunctions and conjunctions as in the proofs
of Propositions 2 and 4, it is easy to prove by induction on the depth of C
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that inseqbc(C) computes the Boolean function induced by C if g1, . . . , gm
is a topological sorting of the gates of C. Moreover, it is easy to see that
length(inseqbc(C)) is linear in the size of C. 2

ISbr\poly includes Boolean function families that correspond to
uncomputable functions from B∗ to B. Take an undecidable set N ⊆ N
and consider the Boolean function family 〈fn〉n∈N with, for each n ∈ N,
fn : Bn → B defined by

fn(b1, . . . , bn) = T if n ∈ N ,

fn(b1, . . . , bn) = F if n /∈ N .

For each n ∈ N , fn is computed by the instruction sequence out.set:T ; !.
For each n /∈ N , fn is computed by the instruction sequence out.set:F ; !.
The length of these instruction sequences is constant in n. Hence, 〈fn〉n∈N
is in ISbr\poly. However, the corresponding function f : B∗ → B is clearly
uncomputable. This reminds of the fact that P/poly includes uncomputable
functions from B∗ to B.

It happens that ISbr\poly and P/poly coincide, provided that we identify
each Boolean function family 〈fn〉n∈N with the unique function f : B∗ → B
such that for each n ∈ N, for each w ∈ Bn, f(w) = fn(w).

Theorem 5 ISbr\poly = P/poly.

Proof: We will prove the inclusion P/poly ⊆ ISbr\poly using the definition
of P/poly in terms of Boolean circuits and we will prove the inclusion
ISbr\poly ⊆ P/poly using the characterization of P/poly in terms of Turing
machines that take advice (see e.g. Chapter 6 of [1]).

P/poly ⊆ ISbr\poly: Suppose that 〈fn〉n∈N in P/poly. Then, for all
n ∈ N, there exists a Boolean circuit C such that C computes fn and the
size of C is polynomial in n. For each n ∈ N, let Cn be such a C. From
Proposition 5 and the fact that linear in the size of Cn implies polynomial in
n, it follows that each Boolean function family in P/poly is also in ISbr\poly.

ISbr\poly ⊆ P/poly: Suppose that 〈fn〉n∈N in ISbr\poly. Then, for all
n ∈ N, there exists an X ∈ ISbr such that X computes fn and length(X)
is polynomial in n. For each n ∈ N, let Xn be such an X. Then f can be
computed by a Turing machine that, on an input of size n, takes a binary
description of Xn as advice and then just simulates the execution of Xn.
It is easy to see that under the assumption that Xn ∈ ISk−1,k−1

br , where
k = length(Xn), the size of the description of Xn and the number of steps
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that it takes to simulate the execution of Xn are both polynomial in n.
We can make this assumption without loss of generality (see the remarks
immediately preceding Proposition 1). Hence, each Boolean function family
in ISbr\poly is also in P/poly. 2

It is unknown to us whether ISkbr\poly is different from ISbr\poly for all
k ∈ N (see also Section 11).

7 The Non-uniform Super-polynomial Complex-
ity Conjecture

In this section, we formulate a complexity conjecture which is a counterpart
of the well-known complexity theoretic conjecture that NP 6⊆ P/poly in the
current setting. The definitions of NP, NP-hardness, NP-completeness and
related notions on which some results in this section and the coming ones
are based are the ones from Chapter 2 of [1].

The counterpart of the conjecture that NP 6⊆ P/poly formulated in
this section corresponds to the conjecture that 3SAT /∈ P/poly. By the
NP-completeness of 3SAT, 3SAT /∈ P/poly is equivalent to NP 6⊆ P/poly. If
the conjecture that NP 6⊆ P/poly is right, then the conjecture that NP 6= P
is right as well.

To formulate the conjecture, we need a Boolean function family
〈3SAT′n〉n∈N that corresponds to 3SAT. We obtain this Boolean function
family by encoding 3CNF-formulas as sequences of Boolean values.

We write H(k) for
(

2k
1

)
+
(

2k
2

)
+
(

2k
3

)
.6 H(k) is the number of combi-

nations of at most 3 elements from a set with 2k elements. Notice that
H(k) = (4k3 + 5k)/3.

It is assumed that a countably infinite set {v1, v2, . . .} of propositional
variables has been given. Moreover, it is assumed that a family of bijections

〈αk : [1, H(k)]→ {L ⊆ {v1,¬ v1, . . . , vk,¬ vk} | 1 ≤ card(L) ≤ 3}〉k∈N

has been given that satisfies the following two conditions:

∀i ∈ N • ∀j ∈ [1, H(i)] • αi
−1(αi+1(j)) = j ,

α is polynomial-time computable ,

6As usual, we write
(
k
l

)
for the number of l-element subsets of a k-element set.
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where α : N+ → {L ⊆ {v1,¬ v1, v2,¬ v2, . . .} | 1 ≤ card(L) ≤ 3} is de-
fined by

α(i) = αmin{j|i∈[1,H(j)]}(i) .

The function α is well-defined owing to the first condition on 〈αk〉k∈N. The
second condition is satisfiable, but it is not satisfied by all 〈αk〉k∈N satisfying
the first condition.

The basic idea underlying the encoding of 3CNF-formulas as sequences
of Boolean values is as follows:

• if n = H(k) for some k ∈ N, then the input of 3SAT′n consists of one
Boolean value for each disjunction of at most three literals from the
set {v1,¬ v1, . . . , vk,¬ vk};

• each Boolean value indicates whether the corresponding disjunction
occurs in the encoded 3CNF-formula;

• if H(k) < n < H(k + 1) for some k ∈ N, then only the first H(k)
Boolean values form part of the encoding.

For each n ∈ N, 3SAT′n : Bn → B is defined as follows:

• if n = H(k) for some k ∈ N:

3SAT′n(b1, . . . , bn) = T iff
∧

i∈[1,n] s.t. bi=T

∨
αk(i) is satisfiable ,

where k is such that n = H(k);

• if H(k) < n < H(k + 1) for some k ∈ N:

3SAT′n(b1, . . . , bn) = 3SAT′H(k)(b1, . . . , bH(k)) ,

where k is such that H(k) < n < H(k + 1).

Because 〈αk〉k∈N satisfies the condition that αi
−1(αi+1(j)) = j for all

i ∈ N and j ∈ [1, H(i)], we have for each n ∈ N, for all b1, . . . , bn ∈ B:

3SAT′n(b1, . . . , bn) = 3SAT′n+1(b1, . . . , bn,F) .

In other words, for each n ∈ N, 3SAT′n+1 can in essence handle all inputs that
3SAT′n can handle. We will come back to this phenomenon in Section 10.

3SAT′ is meant to correspond to 3SAT. Therefore, the following theorem
does not come as a surprise. We identify in this theorem the Boolean function
family 3SAT′ = 〈3SAT′n〉n∈N with the unique function 3SAT′ : B∗ → B such
that for each n ∈ N, for each w ∈ Bn, 3SAT′(w) = 3SAT′n(w).
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Theorem 6 3SAT′ is NP-complete.

Proof: 3SAT′ is NP-complete iff 3SAT′ is in NP and 3SAT′ is NP-
hard. Because 3SAT is NP-complete, it is sufficient to prove that 3SAT′

is polynomial-time Karp reducible to 3SAT and 3SAT is polynomial-time
Karp reducible to 3SAT′, respectively. In the rest of the proof, α is defined
as above.

3SAT′ is polynomial-time Karp reducible to 3SAT: Take the func-
tion f from B∗ to the set of all 3CNF-formulas containing the vari-
ables v1, . . . , vk for some k ∈ N that is defined by f(b1, . . . , bn) =∧
i∈[1,max{H(k)|H(k)≤n}] s.t. bi=T

∨
α(i). We have that 3SAT′(b1, . . . , bn) =

3SAT(f(b1, . . . , bn)). It remains to show that f is polynomial-time com-
putable. To compute f(b1, . . . , bn), α has to be computed for a number of
times that is not greater than n and α is computable in time polynomial
in n. Hence, f is polynomial-time computable.

3SAT is polynomial-time Karp reducible to 3SAT′: Take the unique func-
tion g from the set of all 3CNF-formulas containing the variables v1, . . . , vk
for some k ∈ N to B∗ such that for all 3CNF-formulas φ containing the
variables v1, . . . , vk for some k ∈ N, f(g(φ)) = φ and there exists no w ∈ B∗
shorter than g(φ) such that f(w) = φ. We have that 3SAT(φ) = 3SAT′(g(φ)).
It remains to show that g is polynomial-time computable. Let l be the size
of φ. To compute g(φ), α has to be computed for each clause a number of
times that is not greater than H(l) and α is computable in time polynomial
in H(l). Moreover, φ contains at most l clauses. Hence, g is polynomial-time
computable. 2

Before we turn to the non-uniform super-polynomial complexity con-
jecture, we touch lightly on the choice of the family of bijections in the
definition of 3SAT′. It is easy to see that the choice is not essential. Let
3SAT′′ be the same as 3SAT′, but based on another family of bijections,
say 〈α′n〉n∈N, and let, for each i ∈ N, for each j ∈ [1, H(i)], b′j = bαi

−1(α′i(j))
.

Then:

• if n = H(k) for some k ∈ N:

3SAT′n(b1, . . . , bn) = 3SAT′′n(b′1, . . . , b
′
n) ;

• if H(k) < n < H(k + 1) for some k ∈ N:

3SAT′n(b1, . . . , bn) = 3SAT′′n(b′1, . . . , b
′
H(k), bH(k)+1, . . . , bn) ,

where k is such that H(k) < n < H(k + 1).
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This means that the only effect of another family of bijections is another
order of the relevant arguments.

The non-uniform super-polynomial complexity conjecture is the following
conjecture:

Conjecture 1 3SAT′ /∈ ISbr\poly.

3SAT′ /∈ ISbr\poly expresses in short that there does not exist a poly-
nomial function h : N→ N such that for all n ∈ N there exists an X ∈ ISbr

such that X computes 3SAT′n and length(X) ≤ h(n). This corresponds
with the following informal formulation of the non-uniform super-polynomial
complexity conjecture:

the lengths of the shortest instruction sequences that compute
the Boolean functions 3SAT′n are not bounded by a polynomial
in n.

The statement that Conjecture 1 is a counterpart of the conjecture that
3SAT /∈ P/poly is made rigorous in the following theorem.

Theorem 7 3SAT′ /∈ ISbr\poly iff 3SAT /∈ P/poly.

Proof: This follows immediately from Theorems 5 and 6 and the fact
that 3SAT is NP-complete. 2

8 The Complexity Classes IS\\F
In this section, we introduce a kind of non-uniform complexity classes which
includes a counterpart of the complexity class NP/poly in the setting of
single-pass instruction sequences and show that this counterpart coincides
with NP/poly. Some results in this section are based on the definition of
NP in terms of P, which can for example be found in [1] (and which uses
the idea of checking certificates), and the general definition of non-uniform
complexity classes C/F , which can for example be found in [3] (and which
uses the idea of taking advice).

Let IS ⊆ ISbr and let F ⊆ {h | h : N→ N}. Then IS\\F is the class of
all Boolean function families 〈fn〉n∈N that satisfy:

there exist a monotonic h ∈ F and a Boolean function family
〈gn〉n∈N ∈ IS\F such that, for all n ∈ N, for all w ∈ Bn:

fn(w) = T ⇔ ∃c ∈ Bh(n) • gn+h(n)(w c) = T .
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If a c ∈ B∗ and a w ∈ Bn for which fn(w) = T satisfy gn+h(n)(w c) = T, then
we call c a certificate for w.

In the sequel, the monotonicity requirement in the definition given
above is only used to show that ISbr\\poly coincides with NP/poly (see
Theorems 11 and 12).

For each IS ⊆ ISbr and F ⊆ {h | h : N→ N}, the connection between
the complexity classes IS\F and IS\\F is like the connection between the
complexity classes P and NP in the sense that it concerns the difference in
complexity between finding a valid solution and checking whether a given
solution is valid.

We are primarily interested in the complexity class ISbr\\poly,7 but we
will also pay attention to other instantiations of the general definition just
given.

We have that ISbr\poly is included in ISbr\\poly.

Theorem 8 ISbr\poly ⊆ ISbr\\poly.

Proof: Suppose that 〈fn〉n∈N ∈ ISbr\poly. Then, for all n ∈ N, for all
w ∈ Bn:

fn(w) = T ⇔ ∃c ∈ Bh(n) • fn+h(n)(w c) = T

for the monotonic h ∈ poly defined by h(n) = 0 for all n ∈ N, because the
empty sequence can be taken as certificate for all w. 2

Henceforth, we will use the notation IS\\O(f(n)) for the complexity
class IS\\ {h | h : N→ N ∧ h(n) = O(f(n))}. This notation is among other
things used in the following corollary of the proof of Theorem 8.

Corollary 5 For each k ∈ N, ISbr\O(nk) ⊆ ISbr\\O(nk).

Henceforth, we will use the notation IS\\B(f(n)) for the complexity
class IS\\ {h | h : N→ N ∧ ∀n ∈ N+ • h(n) ≤ f(n)}. This notation is among
other things used in the following theorem about the complexity class
ISbr\\O(nk).

Theorem 9 For each k ∈ N, ISbr\\O(nk) ⊆
⋃
a∈N+ ISbr\\B(ank).

Proof: Let k ∈ N. It is a direct consequence of the definition of ISbr\\O(nk)
that, for all Boolean function families 〈fn〉n∈N, 〈fn〉n∈N ∈ ISbr\\O(nk) implies

7In precursors of this paper, the temporary name P∗∗ is used for the complexity class
ISbr\\poly (see e.g. [7]).
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that there exists an a ∈ N+ such that 〈fn〉n∈N ∈ ISbr\\B(ank). Hence
ISbr\\O(nk) ⊆

⋃
a∈N+ ISbr\\B(ank). 2

In the proof of the following hierarchy theorem for ISbr\\poly, we will
use the notation IS\\nF for

{
f : Bn → B | ∃〈gn〉n∈N ∈ IS\\F • f = gn

}
.

Theorem 10 For each k ∈ N, ISbr\\O(nk) ⊂ ISbr\\O(nk
2+3).

Proof: We will prove this theorem by defining a Boolean function family
that by definition does not belong to ISbr\\O(nk) and showing that it does
belong to ISbr\\O(nk

2+3). The definition concerned makes use of a natural
number ma and an ma-ary Boolean function ga for each positive natural
number a. These auxiliaries are defined first, using additional auxiliaries.
Let k ∈ N.

For each a ∈ N+, let the function Ha : N→ N be defined by Ha(n) =

(3n+10a(n+ank)k−2)a(n+ank)k . By Proposition 1, the remarks immediately
preceding Proposition 1 and the definition of ISbr\\B(ank), we have that,
for each a ∈ N+, the number of n-ary Boolean functions that belong to
ISbr\\nB(ank) is not greater than Ha(n) if n > 0. So |ISbr\\nB(ank)| ≤
Ha(n) if n > 0. By simple arithmetical calculations we find that Ha(n) <

(12(a+ 1)k+1n(k2))(a+1)k+1n(k2)
< 24(a+1)2(k+1)nk2+1

if n > 0. Hence Ha(n) <

2n
k2+2

if n ≥ 4(a + 1)2(k+1). By simple arithmetical calculations we also
find that (4(a+ 1)2(k+1))k

2+2 = 2(k2+2)(2(k+1) log(a+1)+log(4)) and that (k2 +
2)(2(k+1) log(a+1)+log(4)) < 2(k2+2)(k+1)(a+1) < 4(a+1)2(k+1). Hence
nk

2+2 < 2n if n ≥ 4(a+ 1)2(k+1). For each a ∈ N+, let ma = 4(a+ 1)2(k+1).
We immediately have that, for all a ∈ N+, ma < ma+1 and, for all n ≥ ma,

Ha(n) < 2n
k2+2

and nk
2+2 + 1 ≤ 2n.

For each a ∈ N+, let Sa ∈ (Bma)ma
k2+2+1 be such that the elements

of Sa are mutually different, and let Ŝa be the set of all elements of Sa.
Because ma

k2+2 + 1 ≤ 2ma , we have that Ŝa ⊆ Bma . The number of

functions from Ŝa to B is 2ma
k2+2+1, and we have that 2ma

k2+2+1 > Ha(ma) ≥
|ISbr\\maB(ama

k)|. Because each function f ′ : Ŝa → B can be extended to

a function f : Bma → B by defining f(w) = f ′(w) if w ∈ Ŝa and f(w) = F
otherwise, this means that there exists an ma-ary Boolean function that
does not belong to ISbr\\maB(ama

k). For each a ∈ N+, let ga be such an
ma-ary Boolean function.

Let 〈gn〉n∈N be the Boolean function family such that, for each n ∈ N,
gn is defined as follows:
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• if n = ma for some a ∈ N+: gn = ga, where a is such that n = ma;

• if n 6= ma for all a ∈ N+: gn(w) = F for all w ∈ Bn.

For each a ∈ N+, there exists an n ∈ N+ such that gn does not belong to
ISbr\\nB(ank). Hence, by Theorem 9, 〈gn〉n∈N /∈ ISbr\\O(nk).

For each n ∈ N, we can construct an instruction sequence X that
computes gn as follows:

• if n = ma for some a ∈ N+: X = Xw1,g(w1) ;. . .;X
w

nk2+2+1
,g(w

nk2+2+1
)
;!,

where for each i ∈ [1, nk
2+2 + 1], wi is the ith element of Sa (where a

is such that n = ma), and Xw,b is an instruction sequence that sets
the output register to b if all input registers together contain w and
jumps to the next instruction sequence otherwise;

• if n 6= ma for all a ∈ N+: X = !.

In the case where n = ma for some a ∈ N+, length(X) ≤ (nk
2+2 +1) ·(2n+1)

+ 1. Otherwise, length(X) = 1. Hence, 〈gn〉n∈N ∈ ISbr\O(nk
2+3). From this

and Corollary 5, it follows that 〈gn〉n∈N ∈ ISbr\\O(nk
2+3). 2

The approach followed in the proof of the hierarchy theorem for ISbr\poly
does not seem to work for the proof of the hierarchy theorem for ISbr\\poly.

In the general definition of the complexity classes IS\\F , a pair of an
input and a certificate is turned into a single sequence by simply concatenat-
ing the input and the certificate. In the usual definition of NP in terms of P,
on the other hand, a pair of an input and a certificate is uniquely encoded
by a single sequence from which the input and certificate are recoverable. A
function that does so is commonly called a pairing function. In the case of
ISbr\\poly, a definition in which a pair of an input and a certificate is turned
into a single sequence in the latter way could have been given as well.

Consider the pairing function from B∗×B∗ to B∗ that converts each two
sequences (b1, . . . , bn) and (b′1, . . . , b

′
n′) into (b1, b1, . . . , bn, bn,T,F, b

′
1, . . . , b

′
n′).

Henceforth, we will write w · w′, where w,w′ ∈ B∗, to denote the result of
applying this pairing function to w and w′. Take, for eachm ∈ N, the function
from

⋃
i≥m Bi to B∗ that converts each sequence (b1, . . . , bm, bm+1, . . . , bn)

into (b1, . . . , bm) · (bm+1, . . . , bn), and the two projection functions from the
range of the above-mentioned pairing function to B∗ that extract from
each sequence (b1, . . . , bm) · (bm+1, . . . , bn) the sequences (b1, . . . , bm) and
(bm+1, . . . , bn). Then, for all n ∈ N, the restrictions of these functions to
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the sequences that belong to Bn are computable by an instruction sequence
X ∈ IS0

br with length(X) = O(n).

The following theorem gives an alternative characterization of ISbr\\poly.

Theorem 11 Let 〈fn〉n∈N be a Boolean function family. Then we have that
〈fn〉n∈N ∈ ISbr\\poly iff

there exist an h ∈ poly and a Boolean function family 〈gn〉n∈N ∈
ISbr\poly such that, for all n ∈ N, for all w ∈ Bn:

fn(w) = T ⇔ ∃c ∈ B∗ • (|c| ≤ h(n) ∧ g|w·c|(w · c) = T) .

Proof: The implication from left to right follows directly from the
definition of ISbr\\poly and the remark made above about the projection
functions associated with the pairing function used here.

The implication from right to left is proved as follows. Let 〈gn〉n∈N ∈
ISbr\poly be such that there exists an h ∈ poly such that, for all n ∈ N,
for all w ∈ Bn, fn(w) = T ⇔ ∃c ∈ B∗ • (|c| ≤ h(n) ∧ g|w·c|(w · c) = T).
For each w ∈ B∗, let cw be a certificate for w. Suppose that 〈γn〉n∈N, with
γn : Bn → B∗ for every n ∈ N, is an infinite sequence of injective functions
satisfying: (i) there exists a monotonic h ∈ poly such that, for all n ∈ N,
for all w ∈ Bn, |γn(cw)| = h(n), (ii) for all n ∈ N, γn

−1 is computable by an
instruction sequence X ∈ IS0

br with length(X) = O(h(n)). Then there exists
a monotonic h ∈ poly such that, for all n ∈ N, for all w ∈ Bn, γn(cw) ∈ Bh(n)

and there exists a 〈g′n〉n∈N ∈ ISbr\poly such that, for all n ∈ N, for all w ∈ Bn,
g|w·c|(w · cw) = T ⇔ g′n+h(n)(w γn(cw)) = T. The existence of a suitable

〈g′n〉n∈N ∈ ISbr\poly is not guaranteed for an h ∈ poly with the property
that there exist n, n′ ∈ N such that n+ h(n) = n′ + h(n′) and n 6= n′, but
this property is excluded by the required monotonicity of h. It remains
to show that the functions γn supposed above exist. For γn, we can pick
the function that converts each sequence (b1, . . . , bn) into (b1, b

′
1, . . . , bn, b

′
n),

where b′i = T if i 6= n and b′n = F, and adds at the end of the converted
sequence sufficiently many F’s to obtain results of the required length. 2

It happens that ISbr\\poly and NP/poly coincide, provided that we
identify each Boolean function family 〈fn〉n∈N with the unique function
f : B∗ → B such that for each n ∈ N, for each w ∈ Bn, f(w) = fn(w).

Theorem 12 ISbr\\poly = NP/poly.
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Proof: It follows by elementary reasoning from the general definition of
non-uniform complexity classes C/F and the definition of NP in terms of
P that f ∈ NP/poly iff there exist a polynomial function h : N→ N and a
g ∈ P/poly such that, for all w ∈ B∗:

f(w) = T ⇔ ∃c ∈ B∗ • (|c| ≤ h(|w|) ∧ g(w · c) = T)

(cf. Fact 2 in [25]). From this characterization of NP/poly and the
characterization of ISbr\\poly given in Theorem 11, it follows easily that
ISbr\\poly = NP/poly. 2

In Section 7, we have conjectured that 3SAT′ /∈ ISbr\poly. The question
arises whether 3SAT′ ∈ ISbr\\poly. This question can be answered in the
affirmative.

Theorem 13 3SAT′ ∈ ISbr\\poly.

Proof: 3SAT′ ∈ NP by Theorem 6, NP ⊆ NP/poly by the gen-
eral definition of non-uniform complexity classes C/F (see e.g. [3]), and
NP/poly = ISbr\\poly by Theorem 12. Hence, 3SAT′ ∈ ISbr\\poly. 2

9 Completeness for the Complexity Classes IS\\F
In this section, we introduce the notion of IS\\F -completeness, a general
notion of completeness for complexity classes IS\\F where F is closed under
function composition. Like NP-completeness, IS\\F -completeness will be
defined in terms of a reducibility relation.

Let IS ⊆ ISbr, let l,m, n ∈ N, and let f :Bn → B and g:Bm → B. Then f
is l-length IS-reducible to g, written f ≤IS

l g, if there exist h1, . . . , hm:Bn → B
such that:

• there exist X1, . . . , Xm ∈ IS such that X1, . . . , Xm compute h1, . . . , hm
and length(X1), . . . , length(Xm) ≤ l;

• for all b1, . . . , bn ∈ B, f(b1, . . . , bn) = g(h1(b1, . . . , bn), . . . , hm(b1, . . . ,
bn)).

Let IS ⊆ ISbr, let F ⊆ {h | h : N→ N} be such that F is closed under
function composition, and let 〈fn〉n∈N and 〈gn〉n∈N be Boolean function
families. Then 〈fn〉n∈N is non-uniform F -length IS-reducible to 〈gn〉n∈N,
written 〈fn〉n∈N ≤IS

F 〈gn〉n∈N, if there exists an h ∈ F such that:
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• for all n ∈ N, there exist l,m ∈ N with l,m ≤ h(n) such that fn ≤IS
l gm.

Let IS ⊆ ISbr, let F be as above, and let 〈fn〉n∈N be a Boolean function
family. Then 〈fn〉n∈N is IS\\F -complete if:

• 〈fn〉n∈N ∈ IS\\F ;

• for all 〈gn〉n∈N ∈ IS\\F , 〈gn〉n∈N ≤IS
F 〈fn〉n∈N.

The most important properties of non-uniform F -length IS -reducibility
and IS\\F -completeness as defined above are stated in the following two
propositions.

Proposition 6 Let IS ⊆ ISbr, and let F be as above. Then:

1. if 〈fn〉n∈N ≤IS
F 〈gn〉n∈N and 〈gn〉n∈N ∈ IS\F , then 〈fn〉n∈N ∈ IS\F ;

2. ≤IS
F is reflexive and transitive.

Proof: Both properties follow immediately from the definition of ≤IS
F . 2

Proposition 7 Let IS ⊆ ISbr, and let F be as above. Then:

1. if 〈fn〉n∈N is IS\\F -complete and 〈fn〉n∈N ∈ IS\F , then IS\\F = IS\F ;

2. if 〈fn〉n∈N is IS\\F -complete, 〈gn〉n∈N ∈ IS\\F and 〈fn〉n∈N ≤IS
F

〈gn〉n∈N, then 〈gn〉n∈N is IS\\F -complete.

Proof: The first property follows immediately from the definition of
IS\\F -completeness, and the second property follows immediately from the
definition of IS\\F -completeness and the transitivity of ≤IS

F . 2

The properties stated in Proposition 7 make IS\\F -completeness as defined
above adequate for our purposes. In the following proposition, non-uniform
polynomial-length ISbr-reducibility (≤ISbr

poly) is related to polynomial-time

Karp reducibility (≤Karp
poly ).8

Proposition 8 Let 〈fn〉n∈N and 〈gn〉n∈N be Boolean function families, and
let f and g be the unique functions f, g : B∗ → B such that for each n ∈ N,
for each w ∈ Bn, f(w) = fn(w) and g(w) = gn(w). Then f ≤Karp

poly g only if

〈fn〉n∈N ≤
ISbr
poly 〈gn〉n∈N.

8For a definition of polynomial-time Karp reducibility, see e.g. Chapter 2 of [1].
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Proof: This property follows immediately from the definitions of ≤Karp
poly

and ≤ISbr
poly, the fact that P ⊆ P/poly (which follows directly from the general

definition of non-uniform complexity classes C/F ), and Theorem 5. 2

The property stated in Proposition 8 allows for results concerning polynomial-
time Karp reducibility to be reused when dealing with non-uniform
polynomial-length ISbr-reducibility.

We would like to call ISbr\\poly-completeness the counterpart of
NP/poly-completeness in the current setting, but the notion of NP/poly-
completeness looks to be absent in the literature on complexity theory. The
closest to NP/poly-completeness that we could find is p-completeness for
pD, a notion introduced in [22].

Because 3SAT′ is closely related to 3SAT and 3SAT′ ∈ ISbr\\poly, we
expect 3SAT′ to be ISbr\\poly-complete.

Theorem 14 3SAT′ is ISbr\\poly-complete.

Proof: By Theorem 13, we have that 3SAT′ ∈ ISbr\\poly. It remains to
prove that for all 〈fn〉n∈N ∈ ISbr\\poly, 〈fn〉n∈N ≤

ISbr
poly 3SAT′.

Suppose that 〈fn〉n∈N ∈ ISbr\\poly. Let 〈gn〉n∈N ∈ ISbr\poly be such
that there exists a monotonic h ∈ poly such that, for each n ∈ N, for each
w ∈ Bn, fn(w) = T ⇔ ∃c ∈ Bh(n) • gn+h(n)(w c) = T. Such a 〈gn〉n∈N exists
by the definition of ISbr\\poly. Let h ∈ poly be such that, for each n ∈ N, for
each w ∈ Bn, fn(w) = T ⇔ ∃c ∈ Bh(n) • gn+h(n)(w c) = T. Let n ∈ N, and
let m = h(n). Let X ∈ ISbr be such that X computes gn+m and length(X)
is polynomial in n+m.

Assume that out.set:T occurs only once in X, that #l does not occur
in X at positions where there is no lth next primitive instruction, and that
test instructions do not occur in X at the last but one or last position.
These assumptions can be made without loss of generality: by Theorem 2
we may assume without loss of generality that out.set:F does not occur in
X and therefore multiple occurrences of out.set:T can always be eliminated
by replacing them with the exception of the last one by jump instructions,
occurrences of #l at positions where there is no lth next primitive instruction
can always be eliminated by replacing them by #0, and occurrences of test
instructions at the last but one or last position can be eliminated by adding
once or twice #0 at the end. Suppose that X = u1 ; . . . ; uk, and let l ∈ [1, k]
be such that ul is either out.set:T, +out.set:T or −out.set:T.

First of all, we look for a transformation that gives, for each b1, . . . , bn ∈
B, a Boolean formula φb1,...,bn such that fn(b1, . . . , bn) = T iff φb1,...,bn is
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satisfiable. We have that fn(b1, . . . , bn) = T iff there exist initial states
of the Boolean registers named in:n+1, . . . , in:n+m for which there exists
an execution path through X that reaches ul in case the initial states of
the Boolean registers named in:1, . . . , in:n are b1, . . . , bn, respectively. This
brings up the formula φb1,...,bn given below. In this formula, propositional
variables r1, . . . , rn+m and v1, . . . , vk are used. The truth value assigned to
ri (i ∈ [1, n+m]) is intended to indicate whether the content of the input
register named in:i is T and the truth value assigned to vj (j ∈ [1, k]) is
intended to indicate whether the primitive instruction ui is executed.

For each b1, . . . , bn ∈ B, let φb1,...,bn be
∧
i∈[1,n] χi ∧ v1 ∧ vl ∧

∧
j∈[1,k] ψj ,

where: for each i ∈ [1, n], χi is

• ri if bi = T;

• ¬ ri if bi = F;

for each j ∈ [1, k], ψj is

• vj ⇒ vj+1 if uj ≡ a;

• vj ⇒ vj+1 if uj ≡ +f.set:T or uj ≡ −f.set:F;

• vj ⇒ ¬ vj+1 ∧ vj+2 if uj ≡ +f.set:F or uj ≡ −f.set:T;

• (vj ∧ ri ⇒ vj+1) ∧ (vj ∧ ¬ ri ⇒ ¬ vj+1 ∧ vj+2) if uj ≡ +in:i.get;

• (vj ∧ ¬ ri ⇒ vj+1) ∧ (vj ∧ ri ⇒ ¬ vj+1 ∧ vj+2) if uj ≡ −in:i.get;

• (vj ∧
∨
j′∈Bi,T

1,j−1
(vj′ ∧

∧
j′′∈Bi,F

j′+1,j−1

¬ vj′′) ⇒ vj+1) ∧
(vj ∧

∨
j′∈Bi,F

1,j−1
(vj′ ∧

∧
j′′∈Bi,T

j′+1,j−1

¬ vj′′) ⇒ ¬ vj+1 ∧ vj+2)

if uj ≡ +aux:i.get;

• (vj ∧
∨
j′∈Bi,F

1,j−1
(vj′ ∧

∧
j′′∈Bi,T

j′+1,j−1

¬ vj′′) ⇒ vj+1) ∧
(vj ∧

∨
j′∈Bi,T

1,j−1
(vj′ ∧

∧
j′′∈Bi,F

j′+1,j−1

¬ vj′′) ⇒ ¬ vj+1 ∧ vj+2)

if uj ≡ −aux:i.get;

• ¬ vj if uj ≡ #0;

• vj ⇒
∧
j′∈[j+1,j+l−1] ¬ vj′ ∧ vj+l if uj ≡ #l and 1 ≤ l ≤ k − j;

• vj if uj ≡ !;
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where Bi,b
j,j′ is the set of all j′′ ∈ [j, j′] for which uj′′ is either aux:i.set:b,

+aux:i.set:b or −aux:i.set:b.

If there exist initial states of the Boolean registers named in:n+1,
. . . , in:n+m for which there exists an execution path through X that reaches
ul in case the initial states of the Boolean registers named in:1, . . . , in:n are
b1, . . . , bn, respectively, then φb1,...,bn is satisfiable by assigning truth values
to the variables according to the intention mentioned above. On the other
hand, if φb1,...,bn is satisfiable, then a satisfying assignment indicates for
which initial states of the Boolean registers named in:n+1, . . . , in:n+m there
exists an execution path through X that reaches ul and which instructions
are on this execution path. Thus fn(b1, . . . , bn) = T iff φb1,...,bn is satisfiable.

For some l ∈ N, φb1,...,bn still has to be transformed into a wb1,...,bn ∈ Bl
such that φb1,...,bn is satisfiable iff 3SAT′l(wb1,...,bn) = T. We look upon this
transformation as a composition of two transformations: first φb1,...,bn is
transformed into a 3CNF-formula ψb1,...,bn such that φb1,...,bn is satisfiable iff
ψb1,...,bn is satisfiable, and next, for some l ∈ N, ψb1,...,bn is transformed into
a wb1,...,bn ∈ Bl such that ψb1,...,bn is satisfiable iff 3SAT′l(wb1,...,bn) = T.

It is easy to see that the size of φb1,...,bn is polynomial in n and that
(b1, . . . , bn) can be transformed into φb1,...,bn in time polynomial in n. It is well-
known that each Boolean formula ψ can be transformed in time polynomial
in the size of ψ into a 3CNF-formula ψ′, with size and number of variables
linear in the size of ψ, such that ψ is satisfiable iff ψ′ is satisfiable (see e.g.
Theorem 3.7 in [3]). Moreover, it is known from the proof of Theorem 6 that
every 3CNF-formula φ can be transformed in time polynomial in the size
of φ into a w ∈ BH(k′), where k′ is the number of variables in φ, such that
3SAT(φ) = 3SAT′(w). From these facts, and Proposition 8, it follows easily
that 〈fn〉n∈N is non-uniform polynomial-length ISbr-reducible to 3SAT′. 2

The proof of Theorem 14 has been partly inspired by the proof of the
NP-completeness of SAT in [14].

A known result about classical complexity classes turns out to be a
corollary of Theorems 5, 6, 12 and 14.

Corollary 6 NP 6⊆ P/poly iff NP/poly 6⊆ P/poly.
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10 Projective Boolean Function Families

In Section 7, we have noticed that, for each n ∈ N, 3SAT′n+1 can
in essence handle all inputs that 3SAT′n can handle because we have
3SAT′n(b1, . . . , bn) = 3SAT′n+1(b1, . . . , bn,F). In this section, we come back
to this phenomenon.

For each m,n ∈ N such that m ≥ n, we define a projection function
πmn : (Bm → B)→ (Bn → B) as follows:

πmn (f)(b1, . . . , bn) = f(b1, . . . , bn,

m−n ×︷ ︸︸ ︷
F, . . . ,F)

for all f : Bm → B and b1, . . . , bn ∈ B.
A projective Boolean function family is a Boolean function family

〈fn〉n∈N such that fn = πn+1
n (fn+1) for all n ∈ N.

This means that in the case where a Boolean function family 〈fn〉n∈N
is projective, for each m,n ∈ N with m > n, fm can in essence handle all
inputs that fn can handle. For that reason, complexity classes that are
restricted to projective Boolean function families are potentially interesting.

Let IS ⊆ ISbr and F ⊆ {h | h : N→ N}. Then IS\πF is the class of all
projective Boolean function families 〈fn〉n∈N that satisfy:

there exists an h ∈ F such that for all n ∈ N there exists an
X ∈ IS such that X computes fn and length(X) ≤ h(n).

Let IS ⊆ ISbr and let F ⊆ {h | h : N→ N}. Then IS\\πF is the class of
all projective Boolean function families 〈fn〉n∈N that satisfy:

there exist a monotonic h ∈ F and a Boolean function family
〈gn〉n∈N ∈ IS\πF such that, for all n ∈ N, for all w ∈ Bn:

fn(w) = T ⇔ ∃c ∈ Bh(n) • gn+h(n)(w c) = T .

It follows immediately from the definitions concerned that IS\πF and
IS\\πF are subsets of IS\F and IS\\F , respectively. ISbr\πpoly is a proper
subset of ISbr\poly. This is easy to see. In Section 5, we gave an example of
a Boolean function family corresponding to an uncomputable function from
B∗ to B that belongs to ISbr\poly. The Boolean function family concerned is
not a projective Boolean function family, and consequently does not belong
to ISbr\πpoly.

The question arises whether the restriction to projective Boolean func-
tion families is a severe restriction. We have that every Boolean function
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family is non-uniform linear-length ISbr-reducible to a projective Boolean
function family.

Below, we will write lin for the set {h | h : N→ N ∧ h is linear}.

Theorem 15 Let 〈fn〉n∈N be a Boolean function family. Then there exists a

projective Boolean function family 〈gn〉n∈N such that 〈fn〉n∈N ≤
ISbr
lin 〈gn〉n∈N.

Proof: The idea is to convert inputs (b1, . . . , bn) into (b1, b
′
1, . . . , bn, b

′
n),

where b′i = T if i 6= n and b′n = F, because the converted inputs can be
recovered after additions at the end. This conversion has been used before
to prove Theorem 11.

For each n ∈ N, for each i ∈ [1, n], let hn2i−1 : Bn → B be defined by
hn2i−1(b1, . . . , bn) = bi and let hn2i : Bn → B be defined by hn2i(b1, . . . , bn) = T
if i 6= n and hn2i(b1, . . . , bn) = F if i = n. Clearly, these functions can be
computed by instruction sequences from ISbr whose lengths are linear in
n. Therefore, we are done with the proof if we show that there exists a
projective Boolean function family 〈gn〉n∈N such that for all n ∈ N:

fn(b1, . . . , bn) = g2n(hn1 (b1, . . . , bn), . . . , hn2n(b1, . . . , bn)) .

A witness is the projective Boolean function family 〈gn〉n∈N with, for each n ∈
N, g2n :B2n → B defined by g2n(b1, b

′
1, . . . , bn, b

′
n) = fm(b1, . . . , bm), where m

is the unique j ∈ [1, n] such that b′i = T for all i ∈ [1, j−1] and b′j = F if such
an m exists and g2n(b1, b

′
1, . . . , bn, b

′
n) = F otherwise; and g2n+1 : B2n+1 → B

defined by g2n+1(b1, b
′
1, . . . , bn, b

′
n, b) = g2n(b1, b

′
1, . . . , bn, b

′
n). 2

The following result is a corollary of Theorem 15 and the definitions of
ISbr\poly and ISbr\πpoly.

Corollary 7 Let 〈fn〉n∈N ∈ ISbr\poly. Then there exists a 〈gn〉n∈N ∈
ISbr\πpoly such that 〈fn〉n∈N ≤

ISbr
lin 〈gn〉n∈N.

11 Concluding Remarks

We have presented an approach to non-uniform complexity which is based on
the simple idea that each Boolean function can be computed by a single-pass
instruction sequence that contains only instructions to read and write the
contents of Boolean registers, forward jump instructions, and a termination
instruction.

We have answered various questions that arise from this approach, but
many open questions remain. We mention:
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• We do not know whether Theorem 10 can be sharpened. In partic-
ular, it is an open question whether, for each k ∈ N, ISbr\\O(nk) ⊂
ISbr\\O(nk+1).

• We know little about complexity classes IS\F where IS ⊂ ISbr. In
particular, it is an open question whether:

– IS0
br\poly ⊂ ISbr\poly;

– for each l ∈ N, IS0,l
br \poly ⊂ IS0

br\poly;

– for each k ∈ N, IS0
br\O(nk) ⊂ ISbr\O(nk);

– for each k, l ∈ N, IS0,l
br \O(nk) ⊂ IS0

br\O(nk).

• Likewise, we know little about complexity classes IS\\F where IS ⊂
ISbr. It is also an open question whether:

– IS0
br\\poly ⊂ ISbr\\poly;

– for each l ∈ N, IS0,l
br \\poly ⊂ IS0

br\\poly;

– for each k ∈ N, IS0
br\\O(nk) ⊂ ISbr\\O(nk);

– for each k, l ∈ N, IS0,l
br \\O(nk) ⊂ IS0

br\\O(nk).

• We also know little about the connections between complexity classes
IS\F and IS\\F with IS ⊂ ISbr and classical complexity classes. In
particular, it is an open question whether there are classical complexity
classes that coincide with the complexity classes IS0,l

br \poly, IS0
br\\poly,

and IS0,l
br \\poly.

There are not yet indications that the above-mentioned open questions
concerning proper inclusions of complexity classes IS\F and IS\\F with
IS ⊂ ISbr are interdependent.

It is easy to see that IS0
br\poly coincides with the classical complexity

class L/poly. It is well-known that, for all f : B∗ → B, f ∈ L/poly iff f
has polynomial-size branching programs (see e.g. Theorem 4.53 in [23]).9

Let 〈fn〉n∈N ∈ IS0
br\poly. Then, for all n ∈ N, the thread produced by the

instruction sequence that computes fn is in essence a branching program and
its size is polynomially bounded in n. As a consequence of this, IS0

br\poly
coincides with L/poly.

9L is the class of all f :B∗ → B that are logarithmic-space computable, see e.g. Chapter 4
of [1].
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The approaches to computational complexity based on loop pro-
grams [19], straight-line programs [16], and branching programs [13] appear
to be the closest related to the approach followed in this paper.

The notion of loop program is far from abstract or general: a loop
program consists of assignment statements and possibly nested loop state-
ments of a special kind. Loop programs are nevertheless closer to instruction
sequences than Turing machines or Boolean circuits. After a long period of
little interest, there is currently a revival of interest in the approach to issues
relating to non-uniform computational complexity based on loop programs
(see e.g. [4, 18, 20]). The notion of loop program used in recent work on
computational complexity is usually more general than the one originally
used.

The notion of straight-line program is relatively close to the notion of
single-pass instruction sequence: a straight-line program is a sequence of
steps, where in each step a language is generated by selecting an element
from an alphabet or by taking the union, intersection or concatenation of
languages generated in previous steps. In other words, straight-line programs
can be looked upon as single-pass instruction sequences with special basic
instructions, and without test and jump instructions. To our knowledge, the
notion of straight-line program is only used in the work presented in [2, 16].

The notion of branching program is actually a generalization of the
notion of decision tree from trees to graphs, so the term branching program
seems rather far-fetched. However, branching programs are in essence
threads, i.e. the objects that we use to represent the behaviours produced
by instruction sequences under execution. Branching programs are related
to non-uniform space complexity like Boolean circuits are related to non-
uniform time complexity. Like the notion of Boolean circuit, the notion of
branching program looks to be lasting in complexity theory (see e.g. [23, 24]).

The complexity class ISbr\\poly can alternatively be defined in the same
style as ISbr\poly in a setting that allows instruction sequence splitting.
In [7], we introduce an extension of PGA that allows single-pass instruction
sequence splitting and an extension of BTA with a behavioural counterpart
of instruction sequence splitting that is reminiscent of thread forking, and
define ISbr\\poly in this alternative way.
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