Reid et al.’s Distance Bounding Protocol and Mafia Fraud Attacks over Noisy Channels
A. Mitrokotsa, C. Dimitrakakis, P. Peris-Lopez, and J. C. Hernandez-Castro

Abstract—Distance bounding protocols are an effective countermeasure against relay attacks including distance fraud, mafia fraud and terrorist fraud attacks. Reid et al. proposed the first symmetric key distance bounding protocol against mafia and terrorist fraud attacks [1]. However, [2] claims that this is only achieved with a $(7/8)^n$ probability of success for mafia fraud, rather than the theoretical value of $(3/4)^n$ (for n rounds) achieved by distance bounding protocols without a final signature. We prove that the mafia fraud attack success using the Reid et al. protocol is bounded by $(3/4)^n$ and reduces as noise increases. The proof can be of further interest as it is the first — to the best of our knowledge — detailed analysis of the effects of communication errors on the security of a distance bounding protocol.

Index Terms—Contactless smart cards, RFID, distance bounding protocols, relay attacks, mafia fraud attacks.

I. INTRODUCTION

A NUMBER of secure and efficient authentication protocols for RF transponders such as contactless smart cards and RFID tags have been proposed recently. Most assume proximity between readers and transponders due to limited radio channel range. However, an intruder located between the tag T (prover) and the reader R (verifier), can trick the latter into thinking that T is in close proximity. This attack can be divided into three subcategories:

a) Distance fraud: The attacker is a fraudulent tag \overline{T}. The attack involves \overline{T} convincing the legitimate reader R of being nearer to the legitimate tag T than it really is.

b) Mafia fraud [3]: The attacker A is a pair $A = \{T, \overline{R}\}$: T is a fraudulent tag interacting with the legitimate reader R and \overline{R} is a fraudulent reader interacting with the legitimate tag T. Using \overline{R}, T convinces R that the latter communicates with the legitimate tag T while in reality it communicates with the attacker A. This is achieved without the disclosure to A of the private key shared between T and R.

c) Terrorist Fraud: The attacker $A = \{T, \overline{T}\}$ is a pair of two colluding parties: a legitimate tag T and a terrorist tag \overline{T}. The attack enables \overline{T} to convince the legitimate reader R of an assertion related to the private key of T. In this attack, although the legitimate tag T is dishonest and cooperates with the terrorist tag \overline{T}, the secret key shared between the legitimate tag and reader is not revealed to the terrorist tag \overline{T}.

Distance bounding protocols were introduced in [4] to hinder distance fraud and mafia fraud attacks, by measuring the round trip delays during a rapid challenge-response exchange of n bits to infer an upper bound on the distance between the verifier and the prover. Subsequently [5] proposed a distance bounding protocol offering protection against mafia fraud only. Later, Reid et al. proposed a new protocol [1] with the objectives of (a) being resistant to both mafia and terrorist fraud, and (b) suitable for low-cost RFID tags. This work can be considered a reference point in the design of distance bounding protocols for constrained RF tags. Indeed, key ideas of [1] are used in recent proposals as in [6].

Contribution: We analyse the security of Reid et al.’s protocol (henceforth RP) against mafia fraud attack under noisy conditions. Due to power constraints and the wireless medium, RFID systems are particularly susceptible to noise, but its effect on the attacker has not been studied previously. In addition, we clarify RP’s security under noise-free conditions. More specifically, [2] claims that the probability of success for a mafia fraud attack is bounded by $(7/8)^n$. However, this claim is based on an incorrect assumption about the Key Derivation Function (KDF) used in the protocol: that if the adversary can control $3/4$ bits of the input to the KDF, then he can guess the output of the KDF more easily. However, the KDF is indistinguishable from a uniform distribution unless all bits are known [1]. Nevertheless, [2] is commonly cited as evidence for the low security of RP. In this paper, we prove that the attack success probability is upper bounded by $(3/4)^n$.

Notation: We consider sequences $x = x_1, \ldots, x_n$ with all x_i in some alphabet \mathcal{X} and $x \in \mathcal{X}^n$. We write $\mathcal{X}^* \triangleq \bigcup_{n=0}^{\infty} \mathcal{X}^n$ for the set of all sequences. The concatenation of x with some $y \in \mathcal{X}^m$ is written as $x|y \in \mathcal{X}^{m+n}$. If $x, y \in \mathcal{X}^n$ then $x \oplus y \in \mathcal{X}^n$, where \oplus is an appropriate operator (XOR for $\mathcal{X} = \{0, 1\}$). $\mathbb{P}(A)$ denotes the probability of event A, while \triangleq implies a definition.

II. REID ET AL.’S PROTOCOL

In RP [1], the reader R and tag T, whose identifiers are $ID_R, ID_T \in \mathcal{X}^*$ respectively, share a common secret $x \in \mathcal{X}^n$. The messages exchanged are:

1) $R \rightarrow T$: The reader chooses a random number $y_R \in \mathcal{X}^m$ and transmits it and its identity ID_R to the tag.
2) $T \rightarrow R$: The tag chooses a random number $y_T \in \mathcal{X}^m$ and transmits it and its identity ID_T to the reader.
3) R and T: Both entities now use a key derivation function $f_K: \mathcal{X}^n \times \mathcal{X}^n \rightarrow \mathcal{X}^n$ to derive a symmetric encryption key $k = f_K(x, ID_T|ID_R|y_A|y_B)$. This key is used to split the secret key into two shares, k and $d = k \oplus x$. f_K is a pseudo-random function, so when x is a secret of high enough entropy, $f_K(x, \cdot)$ is indistinguishable from a uniform distribution.

4) T and R start the rapid bit exchange. The following steps are repeated for n rounds. At each round i:
 a) $R \rightarrow T$: The reader chooses a random bit c_i, transmits it to T and starts a clock.
 b) $T \rightarrow R$: Upon receiving c_i, the tag replies $r_i(c_i)$, with $r_i(c_i) = d_i$ if $c_i = 0$, and $r_i(c_i) = k_i$ if $c_i = 1$.
 c) R: After the reception of r_i, the reader stops the clock and stores the delay time Δt_i and checks r_i. If r_i is incorrect, an extra error message is sent to T. The delay time is highly dependent on the distance between the tag and the reader.

III. MAFIA FRAUD ATTACKS

In this section we prove bounds on the security of RP against mafia fraud attacks. It is important to note that these bounds are generally applicable to the class of distance bounding protocols that do not use signed messages (i.e. $\text{sign}(c_i|x_1|...|c_n|r_n)$) at the end of the rapid bit exchange phase. In addition, we first provide security results on rapid bit exchange protocols under noisy conditions.

Theorem 1: In RP, the probability that a mafia fraud attack can occur is bounded by $\left(\frac{3}{4}\right)^n$, when transmission errors due to the noise in the forward (reader-to-tag) and backward (tag-to-reader) channels are zero.

Proof (Sketch): An adversary could transmit an anticipated challenge c'_i to the tag before the reader sends its challenge c_i. Half of the time, $c'_i = c_i$, so the adversary can correctly reply $r_i(c_i)$ to the reader. Otherwise, the adversary can guess randomly, again being correct half of the time. So, the adversary has $3/4$ probability of answering correctly overall. Assuming that the success probability at each round is independent of previous successes, the total probability of success for an adversary is $(3/4)^n$ for n rounds.

We only show a sketch proof, as the theorem is a direct corollary of Theorem 2, which also holds when errors can appear due to the noise in the channel (see Fig.1). We now assume that the communication between entities in $\{R, T, A\}$ is not noise free: Whenever a symbol $x \in \mathcal{X}$ is sent from Y to Z, the symbol x' that Z receives may differ from x due to noise. This is modeled as a probability of erroneous transmission from Y to Z, $\varepsilon_{YZ} \triangleq \Pr(x' \neq x)$, for all $Y, Z \in \{T, R, A\}$.

Now consider that an attacker A performs a mafia fraud attack against the communication between a legitimate RFID reader R and a genuine RFID tag T. We use $c_i \in \mathcal{X}$ to denote the challenge sent during the i^{th} round of the rapid bit exchange and $r_i(c_i)$ for the correct response. Before the rapid bit exchange starts, the attacker A sends a sequence of n challenge guesses $\{c'_i\}_{i=1}^n$ to the legitimate tag T, which receives c_i', with error probability $\varepsilon_{AT} \triangleq \Pr(c'_i \neq c_i)$. Then the legitimate tag T calculates the appropriate response $r_i(c'_i)$ and sends it back to the attacker A, who receives r_i'. If $c'_i = c_i$, the attacker sends $\hat{r}_i = r_i'$, the reply received by the tag; otherwise, he selects \hat{r}_i uniformly from \mathcal{X}. The reader R sees \hat{r}_i, and $\varepsilon_{AR} \triangleq \Pr(\hat{r}_i \neq r_i)$.

If the response $r_i(c_i)$, calculated by the legitimate reader R, equals \hat{r}_i, then the adversary is successful. We denote this event by $s_i \triangleq \mathbb{I}\{r_i = r_i(c_i)\}$, where \mathbb{I} is an indicator function such that $\mathbb{I}\{A\} = 1$ if A is true and 0 otherwise. The attack is completely successful when $s_i = 1$ for all i.

Theorem 2: Using RP for n rounds, with alphabet \mathcal{X} and channel noise ε, the probability of success of a mafia fraud attack is:

$$
\Pr(s_1, \ldots, s_n) = [A \frac{1}{k} + \frac{1}{k^2}(1 - \frac{1}{k})]^n
$$

where $A \triangleq \frac{(1-\varepsilon)^2}{k(1-k)} + \frac{(1-\varepsilon)^2}{k^2} + z^2$, $F \triangleq \frac{\varepsilon_{AT}}{k^2} + \frac{1}{2k}$, and $z \triangleq \frac{\varepsilon_{AT}}{k(1-k)}$.

In addition, we assume that $\forall c_i, c'_i \in \mathcal{X}$ such that $c_i \neq c'_i, \theta \triangleq \Pr(r_i(c_i) = r_i(c'_i)) = 1/k$.

Proof: The probability of correctly guessing the i-th challenge is:

$$
\Pr(s_i) = \Pr(s_i|c_i = c'_i)\Pr(c_i = c'_i) + \Pr(s_i|c_i \neq c'_i)\Pr(c_i \neq c'_i).
$$

Therefore, we obtain:

$$
\Pr(s_i) = \Pr(s_i|c_i = c'_i)\frac{1}{k} + \Pr(s_i|c_i \neq c'_i)(1-\frac{1}{k})
$$

(1)

It also holds that $\Pr(s_i|c_i \neq c'_i) = \Pr(\hat{r}_i' = r_i(c_i)|c_i \neq c'_i)$.

In addition, whenever $c'_i \neq c_i$, the attacker sends a random response \hat{r}_i. In that case, the success probability is:

$$
\Pr(s_i|c_i \neq c'_i) = \Pr(\hat{r}_i' = r_i(c_i)|c_i \neq c'_i) = \frac{1}{k}
$$

Consequently, equation (1) can be written as:

$$
\Pr(s_i) = \Pr(s_i|c_i = c'_i)\frac{1}{k} + \frac{1}{k}(1-\frac{1}{k})
$$

(2)

For the case when $c'_i = c_i$, we define the following quantities:

$$
A \triangleq \Pr(s_i|c_i = c'_i) = \Pr(\hat{r}_i' = r_i(c_i)|c_i = c'_i)
$$

$$
B \triangleq \Pr(\hat{r}_i' = r_i(c_i)|c_i = c'_i, \hat{r}_i' \neq r_i(c'_i))
$$

$$
C \triangleq \Pr(\hat{r}_i' = r_i(c'_i)|\hat{r}_i' \neq r_i(c'_i))
$$

$$
D \triangleq \Pr(\hat{r}_i' = r_i(c'_i)|\hat{r}_i' = r_i(c'_i))
$$

It is easy to see that:

$$
A = \Pr(s_i|c_i = c'_i) = BD + C(1 - D)
$$

(3)
In order to further simplify the derivation, we shall also define the following: $x_0 \triangleq c_i$, $x_1 \triangleq c_i'$, $x_2 \triangleq c_i''$, $\varepsilon_1 \triangleq \varepsilon_{RA}$, $\varepsilon_2 \triangleq \varepsilon_{AT}$.

It can now be easily seen that x_0, x_1, x_2 form a three stage Markov chain, which satisfies the assumptions of Lemma 1 (see Appendix) for $n = 2$. Applying the lemma, we obtain:

$$\Pr(x_n = x_0) = \Pr(x_2 = x_0) = \Pr(c_i' = c_i) = \sum_{l=1}^{2} \frac{\varepsilon_1}{k-1} \prod_{j=l+1}^{2} \frac{k(1-\varepsilon_j) - 1}{k-1} + \sum_{j=1}^{2} \frac{k(1-\varepsilon_j) - 1}{k-1} = F$$

Similarly, we may set: $y_0 \triangleq r_i(c_i')$, $y_1 \triangleq r_i = r_i'$, $y_2 \triangleq r_i' = r_i''$, $\varepsilon_1' \triangleq \varepsilon_{TA}$, $\varepsilon_2' \triangleq \varepsilon_{AR}$ to obtain:

$$\Pr(y_n = y_0) = \Pr(y_2 = y_0) = \Pr(r_i(c_i') | c_i = c_i') = \sum_{l=1}^{2} \frac{\varepsilon_1'}{k-1} \prod_{j=l+1}^{2} \frac{k(1-\varepsilon_j) - 1}{k-1} + \sum_{j=1}^{2} \frac{k(1-\varepsilon_j) - 1}{k-1} = D$$

After some calculations, we can simplify the expressions for B, C to $B = F + \theta - \theta F$ and $C = \frac{1-F}{k-1}$, since:

$$\Pr(r_i(c_i') | c_i = c_i') = \Pr(r_i, c_i') = \Pr(r_i, c_i') | c_i = c_i') = \frac{1}{k-1}$$

If we assume $\varepsilon_{AT} = \varepsilon_{TA} = \varepsilon_{RA} = \varepsilon$, Corollary 1 applies and equations (4) and (5) can be condensed to:

$$F = D = \frac{\varepsilon}{1 + z^n + z^n},$$

where $z = \frac{k(k-1)}{k-1} - 1$ and $n = 2$.

Finally, by equation (3) and the theorem’s assumption that $\theta = 1/k$ and substituting B and C we get:

$$A = \frac{F^2(k-1) + F}{k} + \frac{(1-F)^2}{k-1}$$

Using (6), (7) and (3) we obtain the final result, where the probability of a successful attack only depends on the noise ε, the alphabet size k and the number of rounds n.

For $\varepsilon = 0$, equation (6) becomes $\Pr(s_i) = \frac{2k-1}{2k}$. Assuming $k = 2$, we obtain $\Pr(s_i) = \frac{1}{2}$ and independence of consecutive successes, a total success probability of $(3/4)^n$ over n rounds in the rapid-bit exchange. Thus, we recover Theorem 1 and the original result of [1].

The success probability for increasing ε is shown in Fig. 2 for $k \in \{2, 4, 6, 8\}$. One may also see that a successful attack becomes less likely with increased alphabet size or noise. A larger alphabet may result in either a longer transmission time (which is undesirable) or larger error probabilities, depending on the encoding. On the other hand, increased noise reduces the probability of successful authentication of a legitimate tag (see [5], Sec. 3.2). We may choose n, k, and a tolerance threshold [1], [5] to trade off transmission times with guarantees for false accept or reject rates. This is possible if a bound on the error is known, and the costs of transmission and false acceptance or rejection are well defined. However, we do not examine this issue here.

IV. CONCLUSIONS

We have proved that Reid et al.’s protocol is secure against mafia fraud attacks. The probability that an intruder can trick the verifier into thinking that the prover is in close proximity is bounded by $(3/4)^n$ and reduces as noise increases. The result can be extended to the use of a threshold for tolerating a small number of errors [5] by plugging the expression for $\Pr(s_i)$ in the binomial cumulative distribution function. The security of this protocol can be further increased to $(1/2)^n$ by the inclusion of a signed message of the 2n bits sent in the rapid-bit exchange phase [4], [6]. However, such a signed message must be sent by normal communication with error correction [7], which increases authentication time.

V. APPENDIX

Lemma 1: Assume a Markov chain x_0, x_1, \ldots, x_n with $x_i \in \mathcal{X}$ and $|\mathcal{X}| = k$. The chain has the property that, for some $\{\varepsilon_i\}_{i=1}^n$ with $\varepsilon_i \in [0, 1]$: $\Pr(x_i \neq x_{i-1}) = \varepsilon_i$, for $i = 1, \ldots, n$. In addition, $\Pr(x_i = x_{i-1}) = \frac{1}{k}$. Then, $\Pr(x_n = c | x_0 = c)$ equals:

$$\sum_{l=1}^{n} \frac{k(1-\varepsilon_l) - 1}{k-1} + \sum_{j=1}^{n} \frac{k(1-\varepsilon_j) - 1}{k-1} = 1.$$

Corollary 1: If $\varepsilon_i = \varepsilon$ for all i, then for any $n \geq 1$:

$$\Pr(x_n = c | x_0 = c) = \frac{1 - z^n}{k-1} + z^n, \quad z = \frac{k(1-\varepsilon) - 1}{k-1}.$$

REFERENCES

