Contents

Acknowledgments

1 Introduction

- 1.1 Background .. 2
 - 1.1.1 Relation Between Volatility and Economic Fundamentals 2
 - 1.1.2 A Brief History of Financial Mathematics 4
 - 1.1.3 GARCH Models .. 6
 - 1.1.4 Semimartingales, Quadratic Variation, and Realized Volatility 9
- 1.2 The Scaling Model and Volatility Proxies 12
 - 1.2.1 The Scaling Model ... 14
 - 1.2.2 Proxies ... 16
- 1.3 Overview of the Thesis ... 18
- 1.4 Discussion ... 22
- 1.5 Reading Guide ... 24

2 Ranking and Combining Volatility Proxies for GARCH and Stochastic Volatility Models

- 2.1 Model ... 28
- 2.2 Proxies ... 30
 - 2.2.1 Ranking Proxies .. 31
 - 2.2.2 Combining Proxies .. 34
- 2.3 A Good Volatility Proxy for the S&P 500 Index 36
 - 2.3.1 Ranking Proxies .. 37
 - 2.3.2 Optimized Combination 39
- 2.4 Conclusions .. 42
- 2.A Data .. 44
- 2.B Microstructure Noise Barrier .. 44
- 2.C Prescaling .. 45
- 2.D Mathematical Details ... 46
 - 2.D.1 Properties of the Measurement Variance 46
CONTENTS

2.D.2 Identification and Optimality .. 47
2.D.4 Consistency Condition for the Coefficients \(\hat{w} \) 50

3 GARCH Parameter Estimation Using High-Frequency Data 53
 3.1 Model .. 55
 3.2 QML Estimation Using a General Volatility Proxy 58
 3.2.1 Gaussian QMLE .. 58
 3.2.2 Log-Gaussian QMLE 62
 3.2.3 Efficiency of log-Gaussian QMLE versus Gaussian QMLE ... 64
 3.2.4 Relative Error of Volatility Extraction 65
 3.3 Empirical Efficiency Gains for the S&P 500 Index 66
 3.4 Simulation Study .. 69
 3.5 Relation to Semimartingale Models 73
 3.6 Conclusions .. 74
 3.A Data .. 75
 3.B Quasi Maximum Likelihood 75
 3.B.1 Principle of QML .. 75
 3.B.2 QML Regularity Conditions 77
 3.B.3 QML Regularity Conditions for GARCH(1,1) 78
 3.C Proofs .. 79
 3.D Realized Variance of Ornstein-Uhlenbeck Log-Volatility 83

4 Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure 85
 4.1 Accounting for Intraday Price Movements in a Daily GARCH Model ... 87
 4.1.1 Continuous Time Extensions of Discrete Time Models 87
 4.1.2 Inserting Proxies Into a Log-GARCH Recursion 88
 4.1.3 Stationarity for the Log-GARCH Model 90
 4.1.4 Quasi Maximum Likelihood 91
 4.2 Full-Sample Analysis ... 92
 4.2.1 Downward Price Pressure and Volatility 93
 4.2.2 A log-GARCH Model for the S&P 500 Index 96
 4.3 Out-of-Sample Volatility Forecasts 102
 4.4 Conclusions .. 104
 4.A Data .. 106
 4.B Stationarity and Invertibility 106

5 Fit of the Scaling Model .. 111
 5.1 Exploratory Data Analysis: Intraday Volatility Pattern and Periodicity ... 113
CONTENTS

5.2 Diagnostic Checking for the Scaling Model .. 116
 5.2.1 Independence of Scale Factor and Standard Process 118
 5.2.2 Independence of the Sequence of Standard Processes 120
 5.2.3 Stationarity of the Sequence of Standard Processes 124
5.3 Discussion ... 129
5.A Data .. 134
5.B Turning Point, Difference-Sign, and Ljung-Box Tests 134
5.C Log-GARCH Estimates ... 135

Summary .. 139

Samenvatting ... 141

Bibliography ... 143