Volatility proxies and GARCH models
Visser, M.P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments xi

1 Introduction 1

1.1 Background 2.1 Background

1.1.1 Relation Between Volatility and Economic Fundamentals 2

1.1.2 A Brief History of Financial Mathematics 4

1.1.3 GARCH Models 6

1.1.4 Semimartingales, Quadratic Variation, and Realized Volatility 9

1.2 The Scaling Model and Volatility Proxies 12

1.2.1 The Scaling Model 14

1.2.2 Proxies 16

1.3 Overview of the Thesis 18

1.4 Discussion 22

1.5 Reading Guide 24

2 Ranking and Combining Volatility Proxies for GARCH and Stochastic Volatility Models 25

2.1 Model 28

2.2 Proxies 30

2.2.1 Ranking Proxies 31

2.2.2 Combining Proxies 34

2.3 A Good Volatility Proxy for the S&P 500 Index 36

2.3.1 Ranking Proxies 37

2.3.2 Optimized Combination 39

2.4 Conclusions 42

2.A Data 44

2.B Microstructure Noise Barrier 44

2.C Prescaling 45

2.D Mathematical Details 46

2.D.1 Properties of the Measurement Variance 46
3 GARCH Parameter Estimation Using High-Frequency Data

- **3.1 Model**
- **3.2 QML Estimation Using a General Volatility Proxy**
 - **3.2.1 Gaussian QMLE**
 - **3.2.2 Log-Gaussian QMLE**
 - **3.2.3 Efficiency of log-Gaussian QMLE versus Gaussian QMLE**
 - **3.2.4 Relative Error of Volatility Extraction**
- **3.3 Empirical Efficiency Gains for the S&P 500 Index**
- **3.4 Simulation Study**
- **3.5 Relation to Semimartingale Models**
- **3.6 Conclusions**
- **3.7 Data**
- **3.8 Quasi Maximum Likelihood**
 - **3.8.1 Principle of QML**
 - **3.8.2 QML Regularity Conditions**
 - **3.8.3 QML Regularity Conditions for GARCH(1,1)**
- **3.9 Proofs**
- **3.10 Realized Variance of Ornstein-Uhlenbeck Log-Volatility**

4 Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure

- **4.1 Accounting for Intraday Price Movements in a Daily GARCH Model**
 - **4.1.1 Continuous Time Extensions of Discrete Time Models**
 - **4.1.2 Inserting Proxies Into a Log-GARCH Recursion**
 - **4.1.3 Stationarity for the Log-GARCH Model**
 - **4.1.4 Quasi Maximum Likelihood**
- **4.2 Full-Sample Analysis**
 - **4.2.1 Downward Price Pressure and Volatility**
 - **4.2.2 A log-GARCH Model for the S&P 500 Index**
- **4.3 Out-of-Sample Volatility Forecasts**
- **4.4 Conclusions**
- **4.5 Data**
- **4.6 Stationarity and Invertibility**

5 Fit of the Scaling Model

- **5.1 Exploratory Data Analysis: Intraday Volatility Pattern and Periodicity**
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Diagnostic Checking for the Scaling Model</td>
<td>116</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Independence of Scale Factor and Standard Process</td>
<td>118</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Independence of the Sequence of Standard Processes</td>
<td>120</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Stationarity of the Sequence of Standard Processes</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Discussion</td>
<td>129</td>
</tr>
<tr>
<td>5.A</td>
<td>Data</td>
<td>134</td>
</tr>
<tr>
<td>5.B</td>
<td>Turning Point, Difference-Sign, and Ljung-Box Tests</td>
<td>134</td>
</tr>
<tr>
<td>5.C</td>
<td>Log-GARCH Estimates</td>
<td>135</td>
</tr>
</tbody>
</table>

Summary 139

Samenvatting 141

Bibliography 143