Characterizing scaphoid nonunion deformity using 2-D and 3-D imaging techniques

Citation for published version (APA):
ADDENDUM

References
Abbreviations
Erratum
Samenvatting & Discussie
(Summary & Discussion, in Dutch)
Conclusie (Conclusion, in Dutch)
List of contributing authors
Dankwoord (Acknowledgements, in Dutch)
PhD portfolio
List of Publications
Curriculum Vitae
REFERENCES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>One-dimensional</td>
</tr>
<tr>
<td>2-D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>AP</td>
<td>Anteroposterior</td>
</tr>
<tr>
<td>AVN</td>
<td>Avascular necrosis</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CLA</td>
<td>Capitate-lunate angle</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DCA</td>
<td>Dorsal cortical angle</td>
</tr>
<tr>
<td>DISI</td>
<td>Dorsal intercalated segment instability</td>
</tr>
<tr>
<td>H/L ratio</td>
<td>Height-to-length ratio</td>
</tr>
<tr>
<td>ICC</td>
<td>Intraclass correlation coefficient</td>
</tr>
<tr>
<td>ISA</td>
<td>Intrascaphoid angle</td>
</tr>
<tr>
<td>K-wires</td>
<td>Kirschner wires</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>n.s.</td>
<td>Not significant</td>
</tr>
<tr>
<td>RLA</td>
<td>Radiolunate angle</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SLA</td>
<td>Scapholunate angle</td>
</tr>
<tr>
<td>SLAC</td>
<td>Scapholunate advanced collapse</td>
</tr>
<tr>
<td>SNAC</td>
<td>Scaphoid nonunion advanced collapse</td>
</tr>
<tr>
<td>SOVG</td>
<td>Science of Variation Group</td>
</tr>
</tbody>
</table>
In chapter 1, 7, 8 and 9 of this thesis, the term ‘anteroposterior (AP)’ to describe the radiographs of the wrist following a scaphoid nonunion has been used incorrectly. The correct term should be ‘posteroanterior (PA)’, as in standard radiography of the wrist, images are taken with the palm of the hand facing downwards, so the x-ray beam is directed from the dorsum to the palm.
SAMENVATTING EN DISCUSSIE

INTRODUCTIE

Een scaphoïd nonunion is een veelvoorkomende, maar ernstige complicatie van een scaphoïd fractuur. Er is sprake van een nonunion als na zes maanden na het ongeval er nog geen genezing van de fractuur is opgetreden. De relatief hoge incidentie van een nonunion zoals beschreven in de literatuur (~5‒10%), wordt vaak verklaard door de kleine en complexe vorm van het scaphoïd en de kwetsbare bloedvoorziening. Nonunions laten vaak een typische deformiteit zien waarin het distale fragment naar de handpalmzijde roteert ten opzichte van het proximale fragment. Dit resulteert in een standsafwijking van de scaphoïd nonunion fragmenten, wat een humpback deformiteit wordt genoemd. In onbehandelde nonunions zal er uiteindelijk artrose ontstaan in de pols, zgn. carpale artrose. Atrose is het gevolg van slijtage van het kraakbeen waardoor de botten in het gewricht niet meer soepel langs elkaar kunnen glijden, en waardoor beweging pijnlijk is. Een kenmerk van carpale artrose door een scaphoïd nonunion is onder andere het puntiger worden van het processus styloideus radii door osteofyt vorming, zgn. radial styloid pointing.

De behandeling van een scaphoïd nonunion met een deformiteit bestaat vaak uit een chirurgische correctie van de standsafwijking van de fragmenten. Door de fragmenten te herpositioneren probeert de chirurg de originele anatomie van het scaphoïd zo goed mogelijk te herstellen. Dit zou het klinisch resultaat ten goed komen en het risico op artrose op lange termijn verkleinen. Eerdere klinische case studies suggereren dat er na een dergelijke correctie soms in een kwart tot een helft van de patiënten een aanhouden-de standsafwijking kan worden waargenomen. Het is echter op dit moment niet duidelijke welke mate van fragment reductie klinisch succesvol is. Dit probleem kan worden verklaard door de onbetrouwbare manier waarop de scaphoïd deformiteit en carpale artrose op dit moment worden beoordeeld. Deze manier is veelal gebaseerd op standaard 2-D beeldvorming middels röntgenfoto’s. Om chirurgische technieken te verbeteren zijn betrouwbare 3-D beeldvormende technieken nodig, aangezien de deformiteit en artrose zich niet in twee dimensies, maar in drie dimensies ontwikkelen.

In dit proefschrift worden op CT gebaseerde 3-D beeldvormende technieken beschreven die de deformiteit in scaphoïd nonunions en de mate van artrose in de pols beter in kaart brengen. De volgende onderzoeksdoelen zijn opgesteld:

1. Om de originele vorm van het aangedane scaphoïd te schatten (anatomische studies),
2. Om te onderzoeken hoe de deformiteit in scaphoïd nonunions zich ontwikkelt in de tijd (patiëntenstudie) en om de correctie van deze deformiteit te verbeteren tijdens een chirurgische reconstructie (experimentele studie),
3. Om te onderzoeken hoe artrose in de pols zich ontwikkelt in de tijd (patiëntenstudies).
DEEL I: ANATOMIE VAN HET SCAPHOÏD

Het kennen van de originele anatomie van een scaphoïd nonunion van vóór het ongeval is noodzakelijk om de mate van deformiteit objectief te kunnen vaststellen na het ongeval, inclusief de standsafwijking van de fragmenten. Aangezien het scaphoïd erg van vorm en grootte kan verschillen tussen mensen onderling in een populatie,1 is een patiënt-specifieke benadering noodzakelijk om de originele anatomie precies te kunnen schatten. Als de niet-aangedane scaphoïd in de pols aan de andere zijde wordt gebruikt als anatomische referentie, dan kunnen mogelijke links-rechts verschillen, zgn. bilaterale assymmetrie, deze schatting minder precies maken. Eerdere kadaver en radiologische studies lieten zien dat er geen grote links-rechts verschillen zijn in gezonde scaphoïd-paren.66,69,158 In deze studies werd de anatomie van het scaphoïd gemeten met een fysieke schuifmaat of met standaard radiologische 2-D metingen. Deze metingen zijn echter onbetrouwbaar gebleken door onder andere de handmatige aanpak en de moeilijkheid om het scaphoïd volledig in beeld te brengen.43,44,46,158,159 De originele anatomie kan bovendien mogelijk preciezer geschat worden wanneer andere niet-aangedane botten worden gebruikt als anatomische referentie in plaats van het niet-aangedane scaphoïd.

In hoofdstuk 2 is daarom onderzocht in hoeverre de originele lengte van het scaphoïd kan worden geschat aan de hand van anatomische metingen van aanliggende botten aan dezelfde zijde. Deze schattingen werden vergeleken met lengte schattingen aan de hand van metingen van het scaphoïd aan de andere zijde, om zo te onderzoeken welke referentie het meest precies is. Voor dit anatomische onderzoek werden de lengten van het scaphoïd en capitatum, en de breedte van de distale radius gemeten in virtuele 3-D botmodellen afkomstig van CT scans van 28 gezonde polsparen. Na het correleren van deze anatomische metingen, bleek dat een goede schatting van de originele lengte van het scaphoïd kan worden verkregen door het gemiddelde te nemen van de breedte van de distale radius en de lengte van het capitatum. Desondanks leidde het gebruik van het scaphoïd aan de andere zijde tot de meest precieze lengte schatting, en is daarom aan te raden als anatomische referentie voor het herstellen van de lengte in reconstructieve chirurgie van een scaphoïd nonunion met een deformiteit.

In de reconstructieve chirurgie is het herstel van alleen de lengte onvoldoende, aangezien de deformiteit niet een 1-D maar een 3-D probleem is. De deformiteit moet dus worden gecorrigeerd door de fragmenten te herpositioneren in alle richtingen. In hoofdstuk 3 is daarom onderzocht in hoeverre de 3-D vorm van het scaphoïd aan de niet-aangedane zijde kan worden gebruikt om de mate van de standsafwijking van proximale en distale nonunion fragmenten te kwantificeren in de drie dimensies. Hiervoor hebben wij in een anatomische studie de natuurlijke links-rechts variatie in de positie van het distale scaphoïd segment ten opzichte van het proximale segment gekwantificeerd. Onze metingen werden verricht in virtuele 3-D botmodellen afkomstig van CT scans van 19 gezonde polsparen. Gemiddeld bleek dat de distale en proximale scaphoïd segmenten
van linker en rechter polsen symmetrisch waren gepositioneerd ten opzichte van elkaar. Met dit resultaat hebben wij het gebruik van het scaphoïd aan de niet-aangedane zijde als 3-D anatomiche referentie kunnen valideren.

Ondanks de aangetoonde bilaterale symmetrie in gezonde scaphoïd-paren in het algemeen, kunnen in individuele cases links-rechts verschillen tot 2 mm of 10° groot zijn. Dientengevolge, wanneer in de praktijk de niet-aangedane scaphoïd als referentie wordt gebruikt, kan er een kleine afwijking optreden tussen de geschatte vorm en de originele vorm van vóór het ongeval. Desondanks raden wij aan om de niet-aangedane zijde als referentie te gebruiken, aangezien het gebruik ervan relatief eenvoudig is en er op dit moment geen precieze referentie bekend is.

DEEL II: NONUNION DEFORMITEIT

Ondanks de toenemende literatuur op gebied van scaphoïd nonunions, is het nog steeds onduidelijk hoe precies de deformiteit in onbehandelde nonunions zich ontwikkelt in de tijd, en hoe deze deformiteit effectief gecorrigeerd kan worden door de fragmenten te herpositioneren.21,50,51 Deze onduidelijk kan verklaard worden door de onbetrouwbare manier waarop de deformiteit op dit moment radiologisch wordt beoordeeld. Met standaard röntgenfoto’s kan soms het scaphoïd niet goed in beeld worden gebracht door overprojectie van achter elkaar gelegen botten in de pols.160-164 Eerdere interobserver studies43,44,46 lieten zien dat conventionele 2-D metingen op CT plakken, zoals de intrascaphoïd hoek (ISA), onvoldoende betrouwbaar zijn. De ISA is een veelgebruikte hoekmeting om de mate van deformiteit te meten in het sagittale vlak; het is gebaseerd op de hoek tussen de twee lijnen loodrecht op de proximale en distale gewrichtsoppervlakken van het scaphoïd (Fig. 4.3). De variatie in metingen tussen waarnemers wordt veroorzaakt door variaties in de positie waarin de pols ligt tijdens het scannen, door de arbitraire selectie van de CT plak waarin de metingen worden verricht, en door de handmatige metingen zelf. Om het scaphoïd over de volledige lengte beter in het sagittale beeld te brengen, ontwikkelde Sanders165 in 1988 een speciaal CT protocol. Met dit protocol worden er CT plakken in de lange as van het scaphoïd gemaakt, waarbij de arm boven het hoofd in de scanner wordt gelegd. Tegenwoordig kunnen radiologische werkstations de optimale richting van de plakken waarin het scaphoïd is te zien ook aanpassen nadat de scan is gemaakt. Door middel van reformateren kunnen sagittale plakken parallel aan de lange as van het scaphoïd worden gereconstrueerd, ongeacht de positie van de pols tijdens het scannen.166 Ondanks deze radiologische verbeteringen, blijft de beoordeling van de deformiteit in een scaphoïd nonunion onbetrouwbaar.43,44,46

Door het gebruik van de niet-aangedane scaphoïd als 3-D referentie (Hoofdstuk 2 en 3), waren wij in staat om de deformiteit in scaphoïd nonunions uit een retrospectieve serie van 28 patiënten objectief te kwantificeren. In deze serie, beschreven in hoofdstuk 4, werd wederom gebruik gemaakt van virtuele 3-D CT botmodellen. Speciale software
maakte het mogelijk om de nonunion fragmenten over de bijbehorende, gespiegelde niet-aangedane scaphoid segmenten te leggen waarna de deformiteit in 3-D gekwantificeerd kon worden. In deze 28 nonunions was een duidelijke humpback deformiteit te zien, waarin het distale fragment naar de handpalmzijde was geroteerd (gemiddeld onder een hoek van 26°). Deze humpback deformiteit kwam niet overeen met de ISA metingen zoals handmatig gemeten op standaard sagittale CT plakken (gemiddelde hoek: 8°). Dit suggereert dat standaard 2-D metingen de mate van deformiteit onderschatten. Bovendien bleek de overeenstemming tussen herhaalde ISA metingen door verschillende waarnemers onvoldoende te zijn. Deze onnauwkeurigheid in ISA metingen is ook waarne-omen in eerdere betrouwbaarheidsstudies.43,44,46 In onze serie zagen wij niet alleen botverlies tussen de proximale and distale nonunion fragmenten, maar ook botgroei aan de rugzijde van het scaphoid, zgn. osteofyten. Met onze 3-D techniek hebben we het volume van het botverlies en van deze osteofyten kunnen kwantificeren. Het bleek dat het botverlies en de osteofyten qua volume overeenkwamen. Bovendien namen beide volumes toe in de tijd naarmate de nonunions langer onbehandeld waren gebleven. In de medische literatuur is weinig aandacht besteed aan het fenomeen van deze osteofyten; standaard reconstructieve chirurgie is voornamelijk gefocust op het adequaat herpositioneren van de fragmenten waarbij meestal een botspaan wordt ingebracht tussen de fragmenten om het botdefect op te vullen. Onze bevindingen suggereren dat het verwijderen van (een deel van) de osteofyten waarschijnlijk noodzakelijk is om de anatomie van het scaphoid volledig te kunnen herstellen, als aanvulling op het inbrengen van een botspaan. Vanwege de retrospectieve opzet van onze studie was het helaas niet mogelijk om de relatie tussen de mate van deformiteit en pols functie op een gedegen manier te onderzoeken. Hiervoor is een prospectieve studie-opzet nodig.

In hoofdstuk 5 hebben wij een experimentele chirurgische techniek middels plaatfixatie onderzocht voor een preciezer herpositionering van de nonunion fragmenten om zo een beter herstel van de anatomie te verkrijgen. Uit eerder onderzoek blijkt dat plaatfixatie een adequate behandeling vormt in selecte scaphoid nonunions, zoals nonunions met een groot botdefect waardoor een schroef onvoldoende compressie kan bieden, of in aanhoudende nonunions die reeds tevegeefs behandeld zijn middels Schroeffixatie. Uit de literatuur blijkt dat voor deze selecte groep nonunions plaatfixatie een goede genezingskans geeft van ongeveer 90%.114,115,167 In de praktijk wordt tijdens de operatie de plaat vaak door de chirurg zelf met de hand gebogen zodat de plaat de contour van het scaphoid volgt. Soms is echter de plaat niet goed gebogen en steekt het na fixatie uit in het polsgewricht met als gevolg iatrogene kraakbeenschade.113 In onze experimentele studie hebben wij een andere techniek voorgesteld waarbij een standaard plaat eerst wordt voorgebogen aan de hand van een 3-D geprint model van de gespiegelde niet-aangedane zijde. Dit zou mogelijk tot een betere anatomische pasvorm en preciezer herpositionering van de fragmenten kunnen leiden. We onderzochten het verschil in de
restfout in de stand van de fragmenten tussen scaphoïd nonunions die gefixeerd waren met voorgebogen platen en met standaard, niet-voorgebogen platen. Daarnaast onder- zochten we in hoeverre de platen uitstaken ten opzichte van de scaphoïd contour. De experimenten werden verricht op plastic 3-D geprinte botmodellen van scaphoïd nonuni- ons gebaseerd op pre-operatieve scans afkomstig van acht reeds behandelde patiënten. Drie onafhankelijke chirurgen hebben de fixatieprocedure uitgevoerd met beide plaat ty- pen in alle acht nonunion cases. Na analyse, bleek dat er geen relevant verschil was tussen de twee plaattypen met betrekking tot het herpositioneren van de fragmenten. Dit resultaat kan worden verklaard door de algemene moeilijkheid om een unieke pasvorm van de plaat aan het scaphoïd te behalen vanwege de ronde en gladde contour van het proximale fragment met als gevolg dat er meerdere manieren waren om de fragmenten te herpositioneren. Aan de andere kant, de voorgebogen plaat volgde wel beter de scaphoïd contour dan de standaard plaat, wat het risico op iatrogene gewrichtsschade kan verkleinen wanneer plaatfixatie in de praktijk zou worden toegepast.

Nieuwe studies zijn nodig om reconstructieve technieken te verbeteren en om de relatie tussen de mate van anatomisch herstel en klinische uitkomst na chirurgie te onderzoeken. In een eerder onderzoek21 werd een andere reconstructieve techniek beschreven waarbij er ook gebruik werd gemaakt van de niet-aangedane scaphoïd als anatomische referentie om zo de optimale positie van de fragmenten te vinden. Dit onderzoek gebruikte echter geen voorgebogen platen maar 3-D geprinte patiënt-specifie- ke mallen om intra-operatief de optimale positie op te leggen zoals pre-operatief was gepland met 3-D software. In een klinische serie van negen patiënten met een scaphoïd nonunion bleek deze techniek tot een precieze herpositionering van de fragmenten te leiden. Deze techniek is echter op dit moment relatief duur en tijdrovend, en vereist geavanceerde planningsoftware. Bovendien zijn de klinische resultaten op lange termijn (nog) onbekend. Toch zijn wij van mening dat dit soort geavanceerde technieken steeds laagdrempelerig kunnen worden ingezet vanwege de enorme ontwikkelingen die op dit moment plaats vinden in de radiologie en in 3-D printen. Deze ontwikkelingen vormen een interessant aandachtsgebied voor toekomstig onderzoek.

DEEL III: CARPALE ARTROSE

Op dit moment is het onduidelijk of reconstructieve chirurgie van een scaphoïd nonunion de mogelijke ontwikkeling van carpale artrose op lange termijn kan voorkomen.21 Het is bovendien onduidelijk, indien artrose ontstaat, bij welke gradatie van artrose de operatieve behandeling verandert moet worden van reconstructieve in een salvage chirurgie waarbij het aangedane scaphoïd wordt verwijderd.58 Een belangrijke oorzaak voor deze onduidelijkheden is de onbetrouwbare, kwalitatieve evaluatie van carpale artrose op standaard röntgenfoto’s.57,58 Om besluitvorming te verbeteren, is een betere methode nodig om artrose te kunnen beoordelen.
In hoofdstuk 6 was ons doel om nieuwe radiologische indicatoren te vinden die op carpale artrose kunnen wijzen, naast de algemeen bekende indicatoren zoals sclerose en gewrichtsspleetvernaaiing. Voor dit onderzoek hebben wij ons gefocust op de intrinsieke veranderingen van andere carpale botten dan het scaphoïd. Hierbij hebben wij gebruik gemaakt van CT en MRI scans verkregen uit een retrospectieve serie van 73 patiënten die reeds behandeld waren voor scaphoïd nonunions. De niet-aangedane polsen in de bilaterale scans dienden als controle groep. Het bleek dat in de aangedane polsen vaker intra-ossale cysten in de carpale botten voorkwamen dan in de niet-aangedane polsen. Bovendien waren er méér cysten in polsen met oudere nonunions. De meeste intra-ossale cysten buiten het scaphoïd waren eccentrisch gelegen in het trapezoidium (12%). We zijn van mening dat de formatie van de cysten in het trapezoidium wordt getriggerd door locale mechanische stress veroorzaakt door het distale fragment van de scaphoïd nonunion. Deze cysten zouden als een extra radiologische parameter voor carpale artrose gezien kunnen worden.

In hoofdstuk 7 hebben wij de betrouwbaarheid van het stadiëren van carpale artrose op standaard röntgenfoto’s onderzocht. In een observerstudie hebben wij specifiek gekeken of de betrouwbaarheid werd verhoogd door toevoeging van een röntgenfoto van de niet-aangedane pols ter vergelijking en van een educatieve training voor de waarnemers. Hiertoe hebben 82 chirurgen anteroposterieure röntgenfoto’s van polsen afkomstig van 19 patiënten met een scaphoïd nonunion beoordeeld in een online enquête. Voor deze beoordeling gebruikten ze een kwalitatieve schaal van 0 tot 4 – een gangbare röntgenologische maat voor de algemene status van carpale artose. Er waren geen significante verschillen tussen de waarnemers die eenzijdige röntgenfoto’s beoordeelden en die röntgenfoto’s van beide polsen beoordeelden, noch tussen waarnemers met en zonder training. Deze transversale studie liet zien dat de toevoeging van een röntgenfoto ter vergelijking en van een training niet klinisch relevant is in dit type diagnostiek. In het algemeen was de overeenstemming tussen de waarnemers matig. Dit betekent dat er nog steeds ruime is voor verbetering in de manier waarop carpale artrose in de dagelijkse praktijk wordt beoordeeld. Om artrose beter te kunnen beoordelen, zijn wij van mening dat de focus moet worden verlegd naar het ontwikkelen van kwantitatieve beeldvorming, in plaats van standaard, kwalitatieve beeldvorming.

In hoofdstuk 8 was ons doel het ontwikkelen van een semi-automatische techniek om de mate van puntvorming van de processus styloïdeus radii, zgn. radial styloid pointing, te meten in 3-D, om hiermee een kwantitatieve in plaats van een kwalitatieve maat voor artrose te bieden. Radial styloid pointing is het gevolg van osteofytvorming en wordt gezien als een kenmerk van vroege carpale artrose. Voor deze studie hebben we gebruik gemaakt van pre-operatieve CT scans van 31 patiënten die reeds behandeld waren voor scaphoïd nonunions. Middels virtuele 3-D botmodellen afkomstig van deze scans hebben we de grootten van de processus styloïdeus radii vergeleken tussen aangedane en
niet-aangedane polsen. Vervolgens werden deze bevindingen gecorreleerd met de leeftijd van de nonunions en de mate van artose zoals beoordeeld door zes onafhankelijke waarnemers op de reeds genoemde röntgenologische schaal van 0 tot 4. Het bleek dat in 74% van de aangedane polsen de processus styloideus radii significant meer gepunt was dan normaal. Oudere nonunions en nonunions met een ernstiger vorm van artose waren geassocieerd met meer gepunte processus styloidei. Wij zijn van mening dat het stadiëren van carpale artose verbeterd kan worden door standaard evaluatietechnieken te combineren met meer objectieve en kwantitatieve metingen zoals 3-D metingen van het processus styloideus radii. Dit kan chirurgen helpen om een keuze te maken tussen reconstructieve en salvage chirurgie.

Eerder onderzoek in ons instituut168,169 liet zien dat er ook andere indirecte maten van carpale artose gekwantificeerd kunnen worden middels CT, zoals gewrichtsspleetafstanden. Dynamische 3-D beeldvorming van de pols is bijvoorbeeld een veelbelovende methode voor het objectief kwantificeren van gewrichtsspleetafstanden en biedt tevens de mogelijkheid om de veranderde carpale kinematica te analyseren na een fractuur.
CONCLUSIE

Dit proefschrift beschrijft de ontwikkeling van 3-D beeldvormende technieken om de mate van scaphoïd deformiteit en van carpale artrose in polsen met een scaphoïd nonunion te kwantificeren. Voor een objectieve evaluatie van de deformiteit in een individuele casus, is de niet-aangedane, intacte scaphoïd de meest geschikte anatomische referentie (Hoofdstuk 2 en 3).70,170 Middels dit concept hebben wij kunnen laten zien dat onbehandelde scaphoïd nonunions de neiging hebben om in een vast patroon in de tijd te deformeren en osteofyten te vormen aan de rugzijde van het scaphoïd (Hoofdstuk 4).82 Voor een volledig anatomisch herstel van de aangedane scaphoïd is waarschijnlijk naast herpositionering van de fragmenten ook verwijdering van (een deel van) deze osteofyten noodzakelijk. Desondanks blijft het herstellen van de originele anatomie een uitdaging voor de chirurg. Een chirurgische reconstructie middels fixatie met een plaat aangepast op een 3-D geprint anatomisch model leidt niet tot een precieze correctie van de deformiteit (Hoofdstuk 5). Kwalitatieve beoordeling van carpale artrose op standaard röntgenfoto’s is onvoldoende betrouwbaar, ongeacht de beschikbaarheid van een foto van de niet-aangedane pols ter vergelijking of van een training (Hoofdstuk 7). Daarom hebben wij een meer objectieve 3-D beeldvormende techniek ontwikkeld om de puntvorming van het processus styloïdeus radii te meten als kwantitatieve maat voor carpale artrose (Hoofdstuk 8). De processus styloïdeus was significant meer gepunt in de meerderheid van de polsen met een scaphoïd nonunion, waarbij er meer puntvorming te meten was in oudere nonunions met een ernstiger vorm van artrose.

Wij verwachten dat onze voorgestelde 3-D beeldvormende technieken een solide basis vormen voor toekomstige klinische studies die de gevolgen van de mate van anatomisch herstel van het scaphoïd op polsfunctie en op artrosevorming op lange termijn onderzoeken. Dit kan uiteindelijk leiden tot een overeenstemming tussen chirurgen over de optimale reconstructieve techniek in de behandeling van scaphoïd nonunions.
LIST OF CONTRIBUTING AUTHORS

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Department and Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelle E. Brinkhorst</td>
<td>Dep. of Plastic, Reconstructive, and Hand Surgery, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands</td>
</tr>
<tr>
<td>Sophie E.R. Horbach</td>
<td>Dep. of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Geert A. Buijze</td>
<td>Dep. of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Geert Meermans</td>
<td>Dep. of Orthopaedics, Lievensberg Hospital, Bergen Op Zoom, The Netherlands</td>
</tr>
<tr>
<td>Sophie E.R. Horbach</td>
<td>Dep. of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Simon D. Strackee</td>
<td>Dep. of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Mahyar Foumani</td>
<td>Dep. of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Geert J. Streekstra</td>
<td>Dep. of Biomedical Engineering and Physics, Dep. of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Rogier M. Gerards</td>
<td>Dep. of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>George S.I. Sulkers</td>
<td>Dep. of Plastic and Reconstructive Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Thierry G. Guitton</td>
<td>Dep. of Plastic Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands</td>
</tr>
<tr>
<td>Johannes G.G. Dobbe</td>
<td>Dep. of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands</td>
</tr>
</tbody>
</table>
DANKWOORD

Prof. dr. C.M.A.M. van der Horst, beste professor, dank dat u mijn promotor wilt zijn en voor uw begeleiding tijdens mijn promotieperiode. U hebt mij de afgelopen jaren de ruimte geboden om onderzoek te doen op uw afdeling, waar ik altijd met veel plezier heb rondgelopen. Ook uw betrokkenheid bij het initiëren en verrichten van extracurriculaire activiteiten zoals het organiseren van het symposium, waardeer ik enorm.

Dr. S.D. Strackee, beste Simon, het avontuur begon allemaal bij jou. Na mijn co-schappen wilde ik graag verder met onderzoek. Al snel kwam ik je op G-4 tegen en we raakten aan de praat over het scaphoid. Als geen ander wist jij klinisch relevante vragen te stellen over dit onderwerp, die beantwoord konden worden met 3-D beeldvormende technieken. Vanwege jouw enthousiasme voor techniek was er reeds een vruchtbare samenwerking met de afdeling Biomedical Engineering, waar ik dankbaar gebruik van heb kunnen maken. Ik wil je bedanken voor alle uren dat we samen hebben doorgebracht om over ons onderzoek van gedachten te wisselen, en voor het slaan van bruggen tussen techniek en kliniek.

Dr. ir. G.J. Streekstra, beste Geert, ik wil jou als co-promotor bedanken voor al jouw hulp en adviezen. Jouw deur stond altijd open op de afdeling. De wekelijkse overlegmomenten vormden een goede basis en waarborgden de continuïteit van ons onderzoek. Jij hebt mij tijdens die momenten geleerd om kritisch na te denken en om methodologisch verantwoord onderzoek te verrichten. Daarnaast wil ik je bedanken voor je feedback tijdens het schrijven van mijn beursaanvraag.

Dr. ir. J.G.G. Dobbe, beste Iwan, graag wil ik jou als co-promotor bedanken voor al jouw hulp tijdens het verrichten van experimenten en schrijven van artikelen. Jij keek naar onze manuscripten als totaal plaatje; je keek ze niet alleen regel voor regel na, maar gaf ook praktische tips over het vormgeven van figuren en tabellen. Jij leerde mij dat het duidelijk presenteren van resultaten minsten zo belangrijk is als het verkrijgen ervan. Jij leerde mij de fijne kneepjes van het vak. Daarnaast was je altijd bereid om brieven of andere, belangrijke emails voor mij na te kijken, als ik daar om vroeg. Als laatste wil ik je bedanken voor jouw software, waar ik dankbaar gebruik van heb kunnen maken tijdens de vele projecten.

Beste Vera van Vuure, en Mario Montesklaver, dank jullie wel voor al jullie hulp rondom de meer administratieve kant van het onderzoek, zoals jullie hulp met het aanvragen van literatuur en OK-lijsten. Daarnaast wil ik Vera speciaal bedanken voor haar hulp tijdens het organiseren van het symposium en in de afrondende fase van dit proefschrift. Jij zorgde ervoor dat alles soepeltjes verliep, met name door jouw heldere en snelle manier van communiceren en enorme betrokkenheid.
Prof. dr. A.G.J.M. van Leeuwen, beste Ton, dank je wel dat ik de afgelopen jaren ook op uw afdeling welkom was en in een stimulerende omgeving aan mijn onderzoek kon werken, omringd door hele slimme, vriendelijke mensen.

Beste Jetty Stam, ook op de afdeling Biomedical Engineering and Physics loopt er een hele behulpzame secretaresse rond, en dat ben jij. Dank je wel dat ik altijd iets uit jouw “winkelkeltje” mocht pakken om mijn zaken netjes op orde te kunnen maken.

Beste Prof. dr. P.J. Sterk, voorzitter AMC graduate school, ik wil u bedanken voor het toekennen van de AMC PhD beurs die mij financieel de ruimte heeft gegeven om een volwaardig promotieonderzoek te kunnen neerzetten.

Drs. G. Meermans en drs. F. Verstreken, beste Geert en Frederik, graag wil ik jullie bedanken voor onze samenwerking. Ik kende jullie aan het begin van mijn promotieperiode nog niet, maar mijn nieuwsgierigheid was al snel gewekt door jullie artikelen over het scaphoid. Na een paar mailwisselingen zat ik in de trein naar Antwerpen, uitgenodigd om jullie onderzoek van dichterbij te aanschouwen. We hebben daarna samen succesvol aan meerdere projecten kunnen werken. Jullie klinische input heeft hieraan enorm bijgedragen.

Dr. ir. L. Blankevoort, beste Leendert, ondanks dat we niet gezamenlijk onderzoek hebben verricht, heb jij veel betekend voor mijn academische vorming. Daar wil ik je voor bedanken. Als mentor tijdens de 2-wekelijkse journal club gaf jij altijd nuttige tips over het correct opstellen van een artikel. Nog nooit heeft er een artikel weten te passeren zonder op- of aanmerkingen; ik denk dat die champagne fles daarom nog lang bij jou op de kast blijft.

Prof. dr. M. Maas, beste Mario Maas, bedankt voor je kritische blik en hulp tijdens het schrijven van onze case-report, systematic review en observer studie. De mening van een specialist uit een andere hoek dan de chirurgie heb ik als heel verfrissend ervaren. Graag wil ik je ook bedanken voor het tussentijds evalueren van mijn promotietraject als independent peer.

Dr. P. Kloen, beste Peter Kloen, graag wil ik je bedanken voor het feit dat je mijn begeleider wilde zijn tijdens mijn wetenschappelijke stage, toen ik nog als geneeskunde student een ‘groentje’ was op gebied van onderzoek. Nadat we samen een tweetal artikelen hadden
geschreven, bood je mij de mogelijkheid om naar Boston af te reizen voor een buitenlandse stage. In deze periode heb ik mijn passie ontwikkeld voor het doen van onderzoek.

Prof. dr. D. Ring, dear Dr. Ring, thank you for giving me the chance to perform my scientific internship in Boston. Your work ethic and academic spirit truly inspired me. Thank you for your help with the SOVG observer study on SNAC staging.

Dr. G.A. Buijze, Buijze, het is fijn om een mede-enthousiasteling van het scaphoïd te treffen. Bedankt voor je hulp met onze systematic review en voor het simuleren van de scaphoïd nonunion operaties. Ik heb respect voor de manier waarop jij je onderzoek weet te combineren met je opleiding. Succes met jouw grote scaphoïdboek; het wordt sowieso een bestseller!

Dr. M. Foumani, beste Mahyar, dank je wel voor het beoordelen van de beelden in onze cyste studie en voor je hulp met onze case-report. Ik reken jou tot dé nieuwe generatie toegewijde plastisch chirurgen met een passie voor techniek.

Drs. G.S.I. Sulkers, beste George, bedankt voor je hulp met het simuleren van de scaphoïd nonunion operaties. Succes met je cineradiography studies en je opleiding.

Beste Cees Kes, dank je wel dat je als technicus bij de intrumentmakerij mij hebt geholpen met het printen van de scaphoïdmodellen voor de experimenten. Het is altijd fijn om met enthousiaste mensen te werken die met je meedenken.

De volgende personen wil ik graag bedanken voor hun hulp met het onderzoek, kritische blik, en/of schrijven van artikelen; Michelle Brinkhorst, Tessa Drijkoningen, Rogier Gerards, Dr. Thierry Guitton, Erik Heeg, David Heidsieck, Sophie Horbach, Dr. Miryam Obdeijn, Dr. Niels Schep, en Gerhard van Wolfswinkel.

Alle lieve collega-onderzoekers van de plastische chirurgie, Sanne, Mariek en Sophie, en van de ortho, Thijs, Kim, Brent en Gwen, en van de Biomedical, Giuliana, Mustafa en Emilie, en alle journalclub vriendjes, ik wil jullie bedanken voor alle nuttige en minder nuttige afleidingen naast het onderzoek.

Meneer Wagenaar en Doktor Bouman, bedankt dat jullie mijn paranimfen willen zijn. Meneer Wagenaar, succes met je co-schappen; wellicht daarna ook een promotie voor u? Ach, zolang we samen maar een balletje kunnen trappen en een kampvuurtje kunnen bouwen. Doe Fred en Joyce de groeten, en bedank Pam voor alle lekkere hapjes. Doktor
Bouman, succes met je huisartsenopleiding, je wordt een hele grote arts. Hoe gaat het eigenlijk met je mappenstructuur?

Lieve pa & ma, en grote broer Chris, bedankt voor alles.
PHD PORTFOLIO

Name PhD student: Paul Willem Louis ten Berg, MD
PhD period: September 2013–December 2016
Name PhD supervisor: prof. dr. C.M.A.M. van der Horst

<table>
<thead>
<tr>
<th>Courses at AMC graduate school</th>
<th>Year</th>
<th>Workload (Ects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepreneurship in Health and Life Sciences</td>
<td>2015</td>
<td>1.5</td>
</tr>
<tr>
<td>Oral Presentation in English</td>
<td>2015</td>
<td>0.8</td>
</tr>
<tr>
<td>Practical Biostatistics</td>
<td>2015</td>
<td>1.1</td>
</tr>
<tr>
<td>Regulations and organization for clinical investigators</td>
<td>2015</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Academic activities

 journal club (bimonthly) Supervisor: Dr. Ir. Leendert Blankevoort, dep. of Orthopaedics, AMC | 2013-2016 | 5 |
Weekly department seminars, dep. of Plastic, Reconstructive, and Hand Surgery, AMC	2013-2016	3
Weekly department seminars, dep. of biomedical engineering and physics, AMC	2013-2015	3
Tutoring medical students	2013-2016	2
Journal reviewer of HAND (NY)	2015	0.5

Organizational activities

Head of Organization SYMPOSIUM: Medical 3D Printing, dep. of Plastic, Reconstructive, and Hand Surgery, dep. of Oral and Maxillofacial Surgery, AMC | 2016 | 1.5 |
| Volunteer in Organization Amsterdam Foot and Ankle Course (three-day course), dep. of Orthopaedics, AMC | 2014, 2015 | 1.5 |
| Volunteer in Organization 14th European Society of Sports Traumatology, Knee Surgery & Arthroscopy (ESSKA) Congress, Amsterdam | 2014 | 0.5 |
Addendum

<table>
<thead>
<tr>
<th>Year</th>
<th>Workload (Ects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>–</td>
</tr>
</tbody>
</table>

Awards

AMC PhD Scholarship

Presentations

Ten Berg PW, Dobbe JG, van Wolswinkel G, Strackee SD, Streekstra GJ. Validation of the contralateral side as reference for selecting radial head implant sizes. MOVE, Annual Research Meeting, Amsterdam, The Netherlands (poster)

LIST OF PUBLICATIONS

In thesis (in order of appearance)

- Ten Berg PW, Drijkoningen T, Guitton TG, Ring D. Does a Comparison View Improve the Reliability of Staging Wrist Osteoarthritis? *HAND (NY)*. Accepted

Other (Published / Accepted)

- Ten Berg PW, Heeg E, Streekstra GJ. Joint Space Narrowing in Patients with Pisotriquetral Osteoarthritis. *HAND (NY)*. Accepted

• **Ten Berg PW**, Foumani M, Strackee SD. A Rare Case of Bilateral Lunotriquetral Coalition and Bilateral Scaphoid Nonunion. *J Hand Surg Am*. 2015 Sep;40(9):1921

• **Ten Berg PW**, Ring D. Quantitative 3D-CT anatomy of hamate osteoarticular autograft for reconstruction of the middle phalanx base. *Clin Orthop Relat Res*. 2012 dec;470(12):3492-8

Other (Submitted / in revision)

• **Ten Berg PW**, De Roo MG, Maas M, Strackee SD. Is There a Trend in CT Scanning Scaphoid Nonunions for Deformity Assessment? – A systematic review. *Submitted*

• Drijkoningen T, **Ten Berg PW**, Buijze GA. Classification Systems of Scaphoid Fractures. *Submitted* [*book chapter*]
CURRICULUM VITAE

Paul Willem Louis ten Berg (1987, Utrecht) grew up in Utrecht and attended the Christelijk Gymnasium Utrecht where he graduated with cum laude in 2005. Hereafter, he started to study Medicine at the University of Amsterdam.

During his study, for his scientific internship, Paul spent seven months in Boston at the department of Orthopaedics – Hand & Upper Extremity Service, Harvard Medical School, under supervision of dr. David Ring. In this period, he worked on several imaging studies using 3-D techniques to simulate wrist surgery, which were published in international orthopedic journals.

After completing his final clerkship at the department of plastic, hand and reconstructive surgery of the Academic Medical Center, Paul graduated in 2013. Because of his enthusiasm for scientific research, he continued his work at the latter department as research fellow, under supervision of dr. Simon Strackee, plastic surgeon. After exploring several potential research areas, Paul became interested in investigating scaphoid nonunions on which there was no consensus about optimal treatment.

By collaborating with the department of biomedical engineering and physics of the Academic Medical Center, Paul focused on advanced 3-D image analysis to characterize scaphoid nonunion deformity and wrist osteoarthritis, and to develop reconstructive techniques in scaphoid surgery. In 2014, for a self-designed research proposal about this topic, Paul received an AMC PhD Scholarship which allowed him to complete his research on scaphoid nonunions, resulting in this dissertation. During his PhD period, Paul has developed the wish to continue his academic career within the area of (imaging) biomarker research.