Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV using the ATLAS detector

M. Aaboud et al.*
(ATLAS Collaboration)
(Received 27 April 2016; published 22 August 2016)

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb\(^{-1}\) at \(\sqrt{s} = 13 \) TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between \(E_{\text{T}}^{\text{miss}} \approx 250 \) GeV and \(E_{\text{T}}^{\text{miss}} > 700 \) GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.

DOI: 10.1103/PhysRevD.94.032005

I. INTRODUCTION

Events with an energetic jet and large missing transverse momentum \(\vec{p}_{\text{T}}^{\text{miss}} \) (with magnitude \(E_{\text{T}}^{\text{miss}} \)) in the final state constitute a clean and distinctive signature in searches for new physics beyond the Standard Model (SM) at colliders. Such signatures are referred to as monojetlike in this paper. In particular, monojet (as well as monophoton and mono-
W/Z) final states have been studied at the Large Hadron Collider (LHC) [1-15] in the context of searches for large extra spatial dimensions (LED), supersymmetry (SUSY), and weakly interacting massive particles (WIMPs) as candidates for dark matter.

The Arkani-Hamed, Dimopoulos, and Dvali (ADD) model for LED [16] explains the large difference between the electroweak unification scale at \(O(10^2) \) GeV and the Planck scale \(M_{\text{Pl}} \sim O(10^{19}) \) GeV by postulating the presence of \(n \) extra spatial dimensions of size \(R \), and defining a fundamental Planck scale in \(4 + n \) dimensions, \(M_D \), given by \(M_{\text{Pl}} \sim M_D^{1+2/n} R^n \). An appropriate choice of \(R \) for a given \(n \) yields a value of \(M_D \) at the electroweak scale. The extra spatial dimensions are compactified, resulting in a Kaluza-Klein tower of massive graviton modes. If produced in high-energy collisions in association with an energetic jet, these graviton modes escape detection leading to a monojetlike signature in the final state.

Supersymmetry [17-25] is a theory for physics beyond the SM that naturally solves the hierarchy problem and provides a possible candidate for dark matter in the Universe. SUSY enlarges the SM spectrum of particles by introducing a new supersymmetric partner (sparticle) for each particle in the SM. In particular, a new scalar field is associated with each left- or right-handed quark state, and, ignoring intergenerational mixing, two squark mass eigenstates \(\tilde{q}_1 \) and \(\tilde{q}_2 \) result from the mixing of the scalar fields for a particular flavor.

In some SUSY scenarios, a significant mass difference between the two eigenstates in the bottom squark (sbottom) and top squark (stop) sectors can occur, leading to rather light sbottom \(\tilde{b}_1 \) and stop \(\tilde{t}_1 \) mass states. In addition, naturalness arguments suggest that the third generation squarks should be light, with masses below about 1 TeV [26]. In a generic supersymmetric extension of the SM that assumes R-parity conservation [27-31], sparticles are produced in pairs and the lightest supersymmetric particle (LSP) is stable. In this paper the LSP is assumed to be the lightest neutralino \(\tilde{\chi}_1^0 \).

The results from the monojetlike analysis are interpreted in terms of searches for squark production using simplified models in compressed scenarios for which the mass difference \(\Delta m \equiv m_{\tilde{q}} - m_{\tilde{\chi}_1^0} \) is small. Three separate processes are considered: stop pair production, where the stop decays to a charm quark and the LSP \((\tilde{t}_1 \to c + \tilde{\chi}_1^0) \); sbottom pair production with \(\tilde{b}_1 \to b + \tilde{\chi}_1^0 \); and squark pair production, with \(\tilde{q} \to q + \tilde{\chi}_1^0 \) \((q = u, d, c, s)\). For relatively small \(\Delta m \), both the transverse momenta of the quark jets and the \(E_{\text{T}}^{\text{miss}} \)
in the final state are low, making it difficult to extract the signal from the large multijet background. In this study, the event selection makes use of the presence of initial-state radiation jets to identify signal events (see Fig. 1, left). In this case, the squark-pair system is boosted, leading to larger E_T^{miss}.

A nonbaryonic dark matter component in the Universe is commonly used to explain a range of astrophysical measurements (see, for example, Ref. [32] for a review). Since none of the SM particles are adequate dark matter candidates, the existence of a new particle is often hypothesized. Weakly interacting massive particles are one such class of particle candidates [33] that can be searched for at the LHC. Such a new particle would result in the correct relic density values for nonrelativistic matter in the early Universe [34], as measured by the Planck [35] and WMAP [36] satellites, if its mass is between a few GeV and one TeV and if it has electroweak-scale interaction cross sections. Many new particle-physics models such as SUSY [17–25] also predict WIMPs.

In contrast to the Run-1 analyses with the monojetlike final state [37], the results of this analysis are not interpreted in terms of the effective-field-theory models [38]. Simplified models are used instead, providing a more complete framework that involves new mediator particles between the SM and the dark sector [39–42]. The predictions from simplified models coincide with those obtained by using an effective-field-theory approach when the mediator mass considered is above 10 TeV [43]. Here a model with an s-channel exchange of a spin-1 mediator particle with axial-vector couplings is considered, connecting the quarks to WIMPs of a Dirac fermion type. This is referred to as a leptophobic Z'-like model, and is defined by four free parameters: the WIMP mass m_χ, the mediator mass m_A, the coupling of the mediator to WIMPs (g_χ) and the flavor-universal coupling to quarks (g_q). Couplings to other SM particles are not allowed and the minimal mediator width is taken, defined in accord with Ref. [41] as

$$\Gamma_{\min} = \frac{g^2 m_A}{12\pi} \beta^2 \theta(m_A - 2m_\chi),$$

(1)

where $\theta(x)$ denotes the Heaviside step function and $\beta_f = \sqrt{1 - \frac{4m_f^2}{m_A^2}}$ is the velocity of the fermion f with mass m_f in the mediator rest frame. The sum runs over all quark flavors. The monojetlike signature in this model emerges from initial-state radiation of a gluon as shown in Fig. 1 (right).

The paper is organized as follows. The ATLAS detector is described in the next section. Section III provides details of the simulations used in the analysis for background and signal processes. Section IV discusses the reconstruction of jets, leptons, and missing transverse momentum, while Sec. V describes the event selection. The estimation of background contributions and the study of systematic uncertainties are discussed in Secs. VI and VII. The results are presented in Sec. VIII and are interpreted in terms of limits in models for ADD LED, SUSY in compressed scenarios, and WIMP pair production. Finally, Sec. IX is devoted to the conclusions.

II. EXPERIMENTAL SETUP

The ATLAS detector [44] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters, and muon chambers. The ATLAS inner detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon microstrip detector, and a straw tube tracker that also measures transition radiation for particle identification, all immersed in a 2 T axial magnetic field produced by a solenoid. During the first LHC long shutdown, a new tracking layer, known as the insertable B-layer [45], was added at a radius of 33 mm.

High-granularity lead/liquid-argon (LAr) electromagnetic sampling calorimeters cover the pseudorapidity range $|\eta| < 3.2$. The hadronic calorimeter in the range $|\eta| < 1.7$ is provided by a steel/scintillator-tile calorimeter, consisting of a large barrel and two smaller extended barrel cylinders, one on either side of the central barrel. In the endcaps...
For the generation of \(t\bar{t} \) and single top quarks in the \(Wt \) channel and \(s \) channel the POWHEG-BOX v2 [56] generator with the CT10 PDF sets in the matrix element calculations is used. Electroweak \(t \)-channel single top-quark events are generated using the POWHEG-BOX v1 generator. This generator uses the four-flavor scheme for the calculations of NLO matrix elements with the fixed four-flavor PDF set CT10. The parton shower, fragmentation, and underlying event are simulated using PYTHIA-6.428 [57] with the CTEQ6L1 [58] PDF sets and the corresponding Perugia 2012 set of tuned parameters (P2012 tune) [59]. The top-quark mass is set to 172.5 GeV. The EVTGEN v1.2.0 program [60] is used to model the decays of the bottom and charm hadrons. Finally, diboson samples (WW, WZ, and ZZ production) are generated using SHERPA-2.1.1 with CT10 PDFs and are normalized to NLO pQCD predictions [61]. The diboson samples are also generated using POWHEG interfaced to PYTHIA-8.186 and using CT10 PDFs for studies of systematic uncertainties.

B. Signal simulation

Simulated samples for the ADD LED model with different numbers of extra dimensions in the range \(n = 2–6 \) and \(M_D \) in the range 2–5 TeV are generated using PYTHIA-8.165 with NNPDF23LO [62] PDFs. The renormalization scale is set to the geometric mean of the transverse mass of the two produced particles, \(\sqrt{(p_{TG}^2 + m_G^2)(p_{TP}^2 + m_p^2)} \), where \(m_G \) and \(p_{TG} \) (\(m_p \) and \(p_{TP} \)) denote, respectively, the mass and the transverse momentum of the graviton (parton) in the final state. The factorization scale is set to the minimum transverse mass \(\sqrt{m^2 + p_T^2} \) of the graviton and the parton.

SUSY signals for stop pair production with \(\tilde{t}_1 \rightarrow c + \tilde{\chi}^0_1 \), for sbottom pair production decaying as \(\tilde{b}_1 \rightarrow b + \tilde{\chi}^0_1 \), and for the production of squark pairs from the first two squark generations with \(\tilde{q} \rightarrow q + \tilde{\chi}^0_1 \) \((q = u, d, c, s)\) are considered. Events are generated with MG5 _aMC@NLO v5.2.2.3 [63] interfaced to PYTHIA-8.186 with the ATLAS A14 [64] tune for the modeling of the squark decay, and the parton showering, hadronization, and underlying event. The matrix element calculation is performed at tree level, and includes the emission of up to two additional partons. The renormalization and factorization scales are set to the sum of transverse masses of all final state particles. The PDF used for the generation is NNPDF23LO. The ME-PS matching is done using the CKKW-L [65] prescription, with a matching scale set to one quarter of the pair-produced superpartner mass. Simulated samples with squark masses in the range between 250 and 700 GeV and \(\Delta m \) varying between 5 and 25 GeV are produced. Signal cross sections are calculated to NLO in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithmic (NLO + NLL) accuracy [66–68]. The nominal cross section and its uncertainty are taken from an envelope of
cross-section predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [69].

WIMP signals are simulated in POWHEG-BOX v2 [70–72] using revision 3049 of the DMV model implementation of WIMP pair production with s-channel spin-1 mediator exchange at NLO precision including parton showering effects, introduced in Ref. [73]. Renormalization and factorization scales are set to $H_T^2/2$ on an event-by-event basis, where $H_T = \sqrt{m_{jj}^2 + p_{T,j1}^2 + p_{T,j2}^2}$ is defined by the invariant mass of the WIMP pair (m_{jj}) and the transverse momentum of the hardest jet ($p_{T,j1}$). A Breit-Wigner distribution is chosen to describe the mediator propagator. Events are generated using the NNPDF30NLO [74] parton distribution functions and interfaced to PYTHIA-8.205 with the ATLAS A14 tune for parton showering. Couplings of the mediator to WIMPs and quarks are set to $g_\ell = 1$ and $g_q = 1/4$, leading to narrow mediators with Γ_{min}/m_A up to about 5%. A grid of samples is produced for WIMP masses ranging from 1 GeV to 1 TeV and mediator masses between 10 GeV and 2 TeV.3

Differing pileup (multiple proton-proton interactions in the same or neighboring bunch crossings) conditions as a function of the instantaneous luminosity are taken into account by overlaying simulated minimum-bias events generated with PYTHIA onto the hard-scattering process. The MC-generated samples are processed with a full ATLAS detector simulation [75] based on the GEANT4 program [76]. The simulated events are reconstructed and analyzed with the same analysis chain as for the data, using the same trigger and event selection criteria.

IV. RECONSTRUCTION OF PHYSICS OBJECTS

Jets are reconstructed from energy deposits in the calorimeters using the anti-k_T jet algorithm [77] with the radius parameter (in y–ϕ space) set to 0.4. The measured jet transverse momentum is corrected for detector effects, including the noncompensating character of the calorimeter, by weighting energy deposits arising from electromagnetic and hadronic showers differently. In addition, jets are corrected for contributions from pileup, as described in Ref. [78]. Jets with corrected $p_T > 20$ GeV and $|\eta| < 2.8$ are initially considered in the analysis. Track-based variables to suppress pileup jets have been developed. A combination of two such variables called the jet-vertex tagger is constructed. In order to remove jets originating from pileup collisions, for central jets ($|\eta| < 2.4$) with $p_T < 50$ GeV a significant fraction of the tracks associated with each jet must have an origin compatible with the primary vertex, as defined by the jet-vertex tagger [79].

The presence of leptons (electrons or muons) in the final state is used in the analysis to define control samples and to reject background contributions in the signal regions (see Secs. V and VI). Electron candidates are initially required to have $p_T > 20$ GeV and $|\eta| < 2.47$, and to satisfy the loose electron shower shape and track selection criteria described in Refs. [80,81]. Overlaps between identified electrons and jets in the final state are resolved. Jets are discarded if their separation $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ from an identified electron is less than 0.2. The electrons separated by ΔR between 0.2 and 0.4 from any remaining jet are removed.

Muon candidates are formed by combining information from the muon spectrometer and inner tracking detectors as described in Ref. [80] and are required to have $p_T > 10$ GeV and $|\eta| < 2.5$. Jets with $p_T > 20$ GeV and less than three tracks with $p_T > 0.4$ GeV associated with them are discarded if their separation ΔR from an identified muon is less than 0.4. The muon is discarded if it is matched to a jet that has at least three tracks associated with it.

The E_T^{miss} is reconstructed using all energy deposits in the calorimeter up to pseudorapidity $|\eta| = 4.9$. Clusters associated with either electrons or photons with $p_T > 20$ GeV and those associated with jets with $p_T > 20$ GeV make use of the corresponding calibrations for these objects. Softer jets and clusters not associated with these objects are calibrated using tracking information [82]. As discussed below, in this analysis the E_T^{miss} is not corrected for the presence of muons in the final state.

V. EVENT SELECTION

The data sample considered in this paper was collected with tracking detectors, calorimeters, muon chambers, and magnets fully operational, and corresponds to a total integrated luminosity of 3.2 fb$^{-1}$. The data were selected online using a trigger logic that selects events with E_T^{miss} above 70 GeV, as computed at the final stage of the two-level trigger system of ATLAS. With the final analysis requirements, the trigger selection is fully efficient for $E_T^{\text{miss}} > 250$ GeV, as determined using a data sample with muons in the final state. The following selection criteria, summarized in Table 1, are applied in the signal regions.

(i) Events are required to have a reconstructed primary vertex for the interaction with at least two associated tracks with $p_T > 0.4$ GeV and consistent with the beamspot envelope; when more than one such vertex is found, the vertex with the largest summed p_T^2 of the associated tracks is chosen.

(ii) Events are required to have $E_T^{\text{miss}} > 250$ GeV. The analysis selects events with a leading (highest p_T) jet with $p_T > 250$ GeV and $|\eta| < 2.4$ in the final state. A maximum of four jets with $p_T > 30$ GeV and
Table I. Event selection criteria applied, as described in Sec. V.

| Selection criteria | Primary vertex | Leading jet with $p_T > 250$ GeV and $|\eta| < 2.4$ |
|-------------------|----------------|---|
| $E_T^{\text{miss}} > 250$ GeV | $\Delta \phi (\text{jet}, \vec{p}_T^{\text{miss}}) > 0.4$ | At most four jets with $p_T > 30$ GeV and $|\eta| < 2.8$

Jet quality requirements

No identified muons with $p_T > 10$ GeV or electrons with $p_T > 20$ GeV

Inclusive signal region

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV)</th>
<th>IM1</th>
<th>IM2</th>
<th>IM3</th>
<th>IM4</th>
<th>IM5</th>
<th>IM6</th>
<th>IM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>[250–300]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exclusive signal region

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV)</th>
<th>EM1</th>
<th>EM2</th>
<th>EM3</th>
<th>EM4</th>
<th>EM5</th>
<th>EM6</th>
<th>EM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>[250–300]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$|\eta| < 2.8$ are allowed. A separation in the azimuthal plane of $\Delta \phi (\text{jet}, \vec{p}_T^{\text{miss}}) > 0.4$ between the missing transverse momentum direction and each selected jet is required. This requirement reduces the multijet background contribution where the large E_T^{miss} originates mainly from jet energy mismeasurement.

(iii) Events are rejected if they contain any jet inconsistent with the requirement that they originate from a proton-proton collision. Jet quality selection criteria [83] involve quantities such as the pulse shape of the energy depositions in the cells of the calorimeters, electromagnetic fraction in the calorimeter, calorimeter sampling fraction, or charged-particle fraction. The loose criteria are applied to all jets with $p_T > 20$ GeV and $|\eta| < 2.8$, dealing efficiently with coherent noise and electronic noise bursts in the calorimeter producing anomalous energy depositions [84]. Noncollision backgrounds, i.e. energy depositions in the calorimeters due to muons of beam-induced or cosmic-ray origin, are further suppressed by applying the tight selection criteria to the leading jet: the ratio of the jet charged-particle fraction to the calorimeter sampling fraction, $f_{\text{ch}}/f_{\text{mat}}$, is required to be larger than 0.1. These requirements have a negligible effect on the signal efficiency.

(iv) Events with identified muons with $p_T > 10$ GeV or electrons with $p_T > 20$ GeV in the final state are vetoed.

Inclusive (IM1–IM7) and exclusive (EM1–EM6) signal regions are considered with increasing E_T^{miss} thresholds from 250 to 700 GeV (see Table I). The use of inclusive E_T^{miss} signal regions follows the Run 1 strategy, where the results are translated into model-independent cross section upper limits for the production of new physics. The use of exclusive E_T^{miss} signal regions effectively explores information from the shape of the E_T^{miss} distribution (see Secs. VID and VIII) and enhances the sensitivity to the different new physics models.

VI. BACKGROUND ESTIMATION

The $W + \text{jets}$, $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$, $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + \text{jets}$, and $Z/\gamma^* (\rightarrow \mu^+ \mu^-) + \text{jets}$ backgrounds are constrained using MC samples normalized with data in selected control regions. The normalization factors are extracted simultaneously using a global fit that includes systematic uncertainties, to properly take into account correlations.

A $W(\rightarrow \mu \nu) + \text{jets}$ control sample is used to define normalization factors for $W(\rightarrow \mu \nu) + \text{jets}$ and $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$ processes. As discussed in Sec. VID, the use of the $W(\rightarrow \mu \nu) + \text{jets}$ control sample to constrain the normalization of the $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$ process translates into a reduced uncertainty in the estimation of the main irreducible background contribution, due to a partial cancellation of systematic uncertainties and the statistical power of the $W(\rightarrow \mu \nu) + \text{jets}$ control sample in data, which is about seven times larger than the $Z/\gamma^* (\rightarrow \mu^+ \mu^-) + \text{jets}$ control sample. A $W(\rightarrow e\nu) + \text{jets}$ control sample is used to constrain the normalization of the $W(\rightarrow e\nu) + \text{jets}$ and $W(\rightarrow \nu \bar{\nu}) + \text{jets}$ background processes. For the latter, this is motivated by the fact that the τ lepton in the $W(\rightarrow \nu \bar{\nu}) + \text{jets}$ background process mainly decays hadronically leading to a final-state topology in the detector similar to that of the $W(\rightarrow e\nu) + \text{jets}$ sample. A small $Z/\gamma^* (\rightarrow \tau^+ \tau^-) + \text{jets}$ background contribution is also constrained using the $W(\rightarrow e\nu) + \text{jets}$ control sample. Uncertainties related to the difference between $W + \text{jets}$ and $Z + \text{jets}$ final states, leading to potential differences in event kinematics and selection acceptances and efficiencies, are discussed in Sec. VII. Finally, a $Z/\gamma^* (\rightarrow \mu^+ \mu^-) + \text{jets}$ control sample is
used to constrain the \(Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets} \) background contribution.

The remaining SM backgrounds from \(Z/\gamma^* (\rightarrow e^+e^-) + \text{jets} \), \(t\bar{t} \), single top, and dibosons are determined using MC simulated samples, while the multijet background contribution is extracted from data. The contributions from noncollision backgrounds are estimated in data using the beam-induced background identification techniques described in Ref. [84].

The methodology and the samples used for estimating the background are summarized in Table II. In the following subsections, details of the definition of the \(W/Z + \text{jets} \) control regions and of the data-driven determination of the multijet and beam-induced backgrounds are given. This is followed by a description of the background fits.

A. \(W/Z + \text{jets} \) background

Control samples in data, with identified electrons or muons in the final state and with requirements on the jet \(p_T \) and \(E_T^{\text{miss}} \) identical to those in the signal regions, are used to determine the \(W(\rightarrow \ell \nu) + \text{jets} \ (\ell = e, \mu, \tau), \ Z(\rightarrow \nu \bar{\nu}) + \text{jets}, \) and \(Z/\gamma^* (\rightarrow \ell^+\ell^-) + \text{jets} \) \((\ell = \mu, \tau)\) background contributions. The \(Z/\gamma^* (\rightarrow e^+e^-) + \text{jets} \) background contribution is tiny and it is determined from MC simulation. The \(E_T^{\text{miss}} \)-based online trigger used in the analysis does not include muon information in the \(E_T^{\text{miss}} \) calculation. This allows the collection of \(W(\rightarrow \mu \nu) + \text{jets} \) and \(Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets} \) control samples with the same trigger as for the signal regions.

A \(W(\rightarrow \mu \nu) + \text{jets} \) control sample is selected by requiring a muon consistent with originating from the primary vertex with \(p_T > 10 \text{ GeV} \), and transverse mass in the range \(30 \text{ GeV} < m_T < 100 \text{ GeV} \). The transverse mass \(m_T = \sqrt{2p_T^\ell p_T^\nu [1 - \cos(\phi^\ell - \phi^\nu)]} \) is defined by the lepton and neutrino transverse momenta, where the \((x, y)\) components of the neutrino momentum are taken to be the same as the corresponding \(p_T^{\text{miss}} \) components. Events with identified electrons in the final state are vetoed. Similarly, a \(Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets} \) control sample is selected by requiring the presence of two muons with \(p_T > 10 \text{ GeV} \) and invariant mass in the range \(66 \text{ GeV} < m_{\mu\mu} < 116 \text{ GeV} \). In the \(W(\rightarrow \mu \nu) + \text{jets} \) and \(Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets} \) control regions, the \(E_T^{\text{miss}} \) is not corrected for the presence of the muons in the final state, motivated by the fact that these control regions are used to estimate the \(Z(\rightarrow \nu \bar{\nu}) + \text{jets} \) and the \(Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets} \) backgrounds, respectively, in the signal regions with no identified muons.

Finally, a \(W(\rightarrow e\nu) + \text{jets} \) dominated control sample is defined with an isolated electron candidate with \(p_T > 20 \text{ GeV} \), selected with tight or medium selection criteria [80,81] depending on \(p_T \), and no additional identified leptons in the final state. The \(E_T^{\text{miss}} \) calculation includes the contribution of the energy cluster from the identified electron in the calorimeter (no attempt is made to subtract it), since \(W(\rightarrow e\nu) + \text{jets} \) processes contribute to the background in the signal regions when the electron is not identified.

Monte Carlo based scale factors, determined from the SHERPA simulation, are defined for each of the signal selections to estimate the different background contributions in the signal regions. As an illustration, in the case of the dominant \(Z(\rightarrow \nu \bar{\nu}) + \text{jets} \) background process its contribution to a given signal region \(N_{\text{signal}}^{Z(\rightarrow \nu \bar{\nu})} \) is determined using the \(W(\rightarrow \mu \nu) + \text{jets} \) control sample in data according to

\[
N_{\text{signal}}^{Z(\rightarrow \nu \bar{\nu})} = \frac{(N_{\text{data}}^{W(\rightarrow \mu \nu), \text{control}} - N_{\text{non}-W}^{W(\rightarrow \mu \nu), \text{control}}) \times N_{W(\rightarrow \mu \nu), \text{control}}^{MC}}{N_{W(\rightarrow \mu \nu), \text{control}}^{MC}}
\]

(2)
TABLE III. Data and background predictions in the control regions before and after the fit is performed for the IM1 selection. The background predictions include both the statistical and systematic uncertainties. The individual uncertainties are correlated, and do not necessarily add in quadrature to the total background uncertainty.

<table>
<thead>
<tr>
<th>Control region</th>
<th>(W(\to e\nu))</th>
<th>(W(\to \mu\nu))</th>
<th>(Z/\gamma^*(\to \mu^+\mu^-))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events (3.2 fb(^{-1}))</td>
<td>3559</td>
<td>10481</td>
<td>1488</td>
</tr>
<tr>
<td>SM prediction (postfit)</td>
<td>3559 ± 60</td>
<td>10480 ± 100</td>
<td>1488 ± 39</td>
</tr>
<tr>
<td>Fitted (W(\to e\nu))</td>
<td>2410 ± 140</td>
<td>0.4 ± 0.1</td>
<td>–</td>
</tr>
<tr>
<td>Fitted (W(\to \mu\nu))</td>
<td>2.4 ± 0.3</td>
<td>8550 ± 330</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>Fitted (W(\to \tau\nu))</td>
<td>462 ± 27</td>
<td>435 ± 28</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>Fitted (Z/\gamma^*(\to e^+e^-))</td>
<td>0.5 ± 0.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fitted (Z/\gamma^*(\to \mu^+\mu^-))</td>
<td>0.02 ± 0.02</td>
<td>143 ± 10</td>
<td>1395 ± 41</td>
</tr>
<tr>
<td>Fitted (Z/\gamma^*(\to \tau^+\tau^-))</td>
<td>30 ± 2</td>
<td>22 ± 4</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Fitted (Z(\to \nu\bar{\nu}))</td>
<td>1.8 ± 0.1</td>
<td>2.3 ± 0.2</td>
<td>–</td>
</tr>
<tr>
<td>Expected (t\bar{t}), single top</td>
<td>500 ± 150</td>
<td>1060 ± 330</td>
<td>42 ± 13</td>
</tr>
<tr>
<td>Expected dibosons</td>
<td>150 ± 13</td>
<td>260 ± 25</td>
<td>48 ± 5</td>
</tr>
<tr>
<td>MC exp. SM events</td>
<td>3990 ± 320</td>
<td>10500 ± 710</td>
<td>1520 ± 98</td>
</tr>
<tr>
<td>Fit input (W(\to e\nu))</td>
<td>2770 ± 210</td>
<td>0.4 ± 0.1</td>
<td>–</td>
</tr>
<tr>
<td>Fit input (W(\to \mu\nu))</td>
<td>2.4 ± 0.3</td>
<td>8500 ± 520</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>Fit input (W(\to \tau\nu))</td>
<td>531 ± 39</td>
<td>500 ± 34</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>Fit input (Z/\gamma^*(\to e^+e^-))</td>
<td>0.5 ± 0.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fit input (Z/\gamma^*(\to \mu^+\mu^-))</td>
<td>0.02 ± 0.02</td>
<td>146 ± 13</td>
<td>1427 ± 92</td>
</tr>
<tr>
<td>Fit input (Z/\gamma^*(\to \tau^+\tau^-))</td>
<td>34 ± 3</td>
<td>25 ± 4</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Fit input (Z(\to \nu\bar{\nu}))</td>
<td>1.8 ± 0.1</td>
<td>2.2 ± 0.1</td>
<td>–</td>
</tr>
<tr>
<td>Fit input (t\bar{t}), single top</td>
<td>500 ± 160</td>
<td>1060 ± 340</td>
<td>42 ± 13</td>
</tr>
<tr>
<td>Fit input dibosons</td>
<td>150 ± 13</td>
<td>260 ± 25</td>
<td>48 ± 5</td>
</tr>
</tbody>
</table>

TABLE IV. Data and SM background prediction, before and after the fit, in the \(W(\to e\nu)\) control region for the different selections. For the SM predictions both the statistical and systematic uncertainties are included.

<table>
<thead>
<tr>
<th>Inclusive selection</th>
<th>IM1</th>
<th>IM2</th>
<th>IM3</th>
<th>IM4</th>
<th>IM5</th>
<th>IM6</th>
<th>IM7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events (3.2 fb(^{-1}))</td>
<td>3559</td>
<td>1866</td>
<td>992</td>
<td>532</td>
<td>183</td>
<td>72</td>
<td>32</td>
</tr>
<tr>
<td>SM prediction (postfit)</td>
<td>3559 ± 60</td>
<td>1866 ± 43</td>
<td>992 ± 32</td>
<td>532 ± 23</td>
<td>183 ± 14</td>
<td>72 ± 8</td>
<td>32 ± 6</td>
</tr>
<tr>
<td>SM prediction (prefit)</td>
<td>3990 ± 320</td>
<td>2110 ± 170</td>
<td>1142 ± 94</td>
<td>654 ± 54</td>
<td>216 ± 19</td>
<td>85 ± 8</td>
<td>34 ± 3</td>
</tr>
<tr>
<td>Exclusive selection</td>
<td>EM1</td>
<td>EM2</td>
<td>EM3</td>
<td>EM4</td>
<td>EM5</td>
<td>EM6</td>
<td>EM7</td>
</tr>
<tr>
<td>Observed events (3.2 fb(^{-1}))</td>
<td>1693</td>
<td>874</td>
<td>460</td>
<td>349</td>
<td>111</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>SM prediction (postfit)</td>
<td>1693 ± 41</td>
<td>874 ± 30</td>
<td>460 ± 21</td>
<td>349 ± 19</td>
<td>111 ± 11</td>
<td>40 ± 6</td>
<td></td>
</tr>
<tr>
<td>SM prediction (prefit)</td>
<td>1880 ± 150</td>
<td>971 ± 79</td>
<td>488 ± 40</td>
<td>439 ± 36</td>
<td>131 ± 12</td>
<td>50 ± 5</td>
<td></td>
</tr>
</tbody>
</table>

where \(N_{signal}^{MC(Z(\to e\bar{e}))}\) denotes the background predicted by the MC simulation in the signal region, and \(N_{data}^{W(\to \mu\nu),control}\), \(N_{MC}^{W(\to \mu\nu),control}\), and \(N_{non-W}^{W(\to \mu\nu),control}\) denote, in the control region, the number of data events, the number of \(W(\to \mu\nu)\) + jets candidates from MC simulation, and the non-\(W(\to \mu\nu)\) background contribution, respectively. The \(N_{non-W}^{W(\to \mu\nu),control}\) term refers mainly to top-quark and diboson processes, but also includes contributions from other \(W/Z + \text{jets}\) processes. Multijets and noncollission backgrounds in the control regions are negligible.

As discussed in Sec. VI D, a global simultaneous likelihood fit to all the control regions is used to determine the normalization factors.

B. Multijets background

The multijet background with large \(E_T^{miss}\) mainly originates from the misreconstruction of the energy of a jet in the calorimeter and to a lesser extent is due to the presence of neutrinos in the final state from heavy-flavor hadron decays. In this analysis, the multijet background is determined from data, using the jet smearing method as described in Ref. [85], which relies on the assumption that the \(E_T^{miss}\) of multijet events is dominated by fluctuations in the jet response in the detector which can be measured in the data. For the IM1 and EM1 selections, the multijets background constitutes about 0.5% of the total background, and is negligible for the other signal regions.
C. Noncollision background

Noncollision backgrounds represent a significant portion of data acquired by E_T^{miss} triggers. These backgrounds resemble the topology of monojetlike final states and a dedicated strategy with a suppression power of approximately 10^3 is needed in order to reduce these backgrounds to a subpercent level. This is achieved by the jet quality selection criteria described in Sec. V. The rate of jets due to cosmic-ray muons surviving this selection, as measured in dedicated cosmic ray data sets, is found to be negligible compared to the rate of data in the monojetlike signal regions. The main source of residual noncollision backgrounds is therefore beam-induced muons originating in the particle cascades due to beam halo protons intercepting the LHC collimators. The noncollision background is estimated using a method that identifies beam-induced muons based on the spatial matching of calorimeter clusters to muon track segments, reconstructed in the muon-system endcaps and pointing in a direction nearly parallel to the beam pipe [84]. The number of events where the reconstructed objects satisfy the identification criteria is corrected for the efficiency of this method. The efficiency is evaluated in a dedicated beam-induced background-enhanced region defined by inverting the tight jet quality selection imposed on the leading jet.

The results indicate an almost negligible contribution from noncollision backgrounds in the signal regions. As an example, 110 and 19 noncollision background events are estimated in the IM1 and EM3 signal regions, respectively, with no sign of noncollision backgrounds at $E_T^{\text{miss}} > 500$ GeV. This constitutes about 0.5% of the total background for the IM1 and EM3 selections.

D. Background fits

The use of control regions to constrain the normalization of the dominant background contributions from $Z(\rightarrow \nu \bar{\nu}) +$ jets and $W +$ jets significantly reduces the relatively large theoretical and experimental systematic uncertainties, of the order of 20%–40%, associated with purely MC-based background predictions in the signal regions. A complete study of systematic uncertainties is carried out, as detailed in Sec. VII. To determine the final uncertainty in the total background, all systematic uncertainties are treated as nuisance parameters with Gaussian shapes in a fit based on the profile likelihood method [86] and which takes into account correlations among systematic variations. The likelihood also takes into account cross-contamination between different background sources in the control regions.

A simultaneous likelihood fit to the $W(\rightarrow \mu \nu) +$ jets, $W(\rightarrow e\nu) +$ jets, and $Z/\gamma(\rightarrow \mu^+ \mu^-) +$ jets control regions is performed to normalize and constrain the corresponding background estimates in the signal regions. Background-only fits are performed separately in each of the inclusive regions IM1–IM7, as described in Sec. V. In addition, a fit...
FIG. 2. The measured E_T^{miss} and leading-jet p_T distributions in the $W(\rightarrow \mu\nu) + \text{jets}$ (top), $W(\rightarrow e\nu) + \text{jets}$ (middle), and $Z/\gamma^* (\rightarrow \mu^+\mu^-) + \text{jets}$ (bottom) control regions, for the IM1 selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit as performed in exclusive E_T^{miss} bins. The error bands in the ratios include the statistical and experimental uncertainties in the background predictions as determined by the global fit to the data in the control regions. The contributions from multijets and noncollision backgrounds are negligible and are not shown in the figures.
lepton identification and reconstruction efficiencies, energy/momentum scale and resolution translate into an uncertainty in the total background which varies between \(\pm 0.1\% \) and \(\pm 1.4\% \) for the IM1 and between \(\pm 0.1\% \) and \(\pm 2.6\% \) for the IM7 selections, respectively.

Variations of the renormalization, factorization, and parton-shower matching scales and PDFs in the SHERPA \(W/Z + \text{jets} \) background samples translate into a \(\pm 1.1\% \) to \(\pm 1.3\% \) uncertainty in the total background. Model uncertainties, related to potential differences between \(W + \text{jets} \) and \(Z + \text{jets} \) final states, affecting the normalization of the dominant \(Z(\rightarrow \nu \bar{\nu}) + \text{jets} \) background and the small \(Z/\gamma'(\rightarrow \tau^+\tau^-) + \text{jets} \) background contribution as determined in \(W(\rightarrow \mu \nu) + \text{jets} \) and \(W(\rightarrow e\nu) + \text{jets} \) control regions, are studied in detail. This includes uncertainties related to PDFs and renormalization and factorization scale settings, the parton-shower parameters and the hadronization model used in the MC simulation, and the dependence on the lepton reconstruction and acceptance. As a result, an additional \(\pm 3\% \) uncertainty in the \(Z(\rightarrow \nu \bar{\nu}) + \text{jets} \) and \(Z/\gamma'(\rightarrow \tau^+\tau^-) + \text{jets} \) contributions is included for all the selections. In addition, the effect from NLO electroweak corrections on the \(W + \text{jets} \) to \(Z + \text{jets} \) ratio is taken into account [87–89]. Dedicated parton-level calculations are performed with the same \(E_T^\text{miss} \) and leading-jet\(p_T \) requirements as in the IM1–IM7 signal regions. The studies suggest an effect on the \(W + \text{jets} \) to \(Z + \text{jets} \) ratio which varies between about \(\pm 1.9\% \) for IM1 and \(\pm 5.2\% \) for IM7, although the calculations suffer from large uncertainties, mainly due to our limited knowledge of the photon PDFs in the proton. In this analysis, these results are adopted as an additional uncertainty in the \(Z(\rightarrow \nu \bar{\nu}) + \text{jets} \) and \(Z/\gamma'(\rightarrow \tau^+\tau^-) + \text{jets} \) contributions. Altogether, this translates into an uncertainty in the total background which varies from \(\pm 2.0\% \) and \(\pm 3.0\% \) for the IM1 and IM5 selections, respectively, to about \(\pm 3.9\% \) for the IM7 selection.

Theoretical uncertainties in the predicted background yields for top-quark-related processes include uncertainties on the absolute \(t\bar{t} \) and single-top production cross sections; variations in the set of parameters that govern the parton showers and the amount of initial- and final-state soft gluon radiation; and uncertainties due to the choice of renormalization and factorization scales and PDFs. This introduces an uncertainty in the total background prediction which varies between \(\pm 2.7\% \) and \(\pm 3.3\% \) for the IM1 and IM7 selections, respectively. Uncertainties in the diboson contribution are estimated using different MC generators and translate into an uncertainty in the total background in the range between \(\pm 0.05\% \) and \(\pm 0.4\% \). A \(\pm 100\% \) uncertainty in the multijet and noncollision background estimations is adopted, leading to a \(\pm 2.0\% \) uncertainty in the total background for the IM1 selection. Statistical uncertainties related to the data control regions and simulation samples lead to an additional uncertainty in the final background estimates in the signal regions which varies between
SEARCH FOR NEW PHENOMENA IN FINAL STATES WITH ... PHYSICAL REVIEW D 94, 032005 (2016)

Table VII. Data and SM background predictions in the signal region for several inclusive and exclusive E_T^{miss} selections. For the SM prediction both the statistical and systematic uncertainties are included. In each signal region, the individual uncertainties for the different background processes can be correlated, and do not necessarily add in quadrature to the total background uncertainty.

Table VIII. Data and SM background predictions in the signal region for the different selections. For the SM predictions both the statistical and systematic uncertainties are included.

±2.5% for the IM1 and ±10% for the IM7 selections. Finally, the impact of the uncertainty in the integrated luminosity, which partially cancels in the data-driven determination of the SM background, is negligible.

B. Signal systematic uncertainties

Several sources of systematic uncertainty in the predicted signal yields are considered for each of the models of new physics. The uncertainties are computed separately for each signal region by varying the model parameters (see Sec. VIII).

Experimental uncertainties include those related to the jet and E_T^{miss} reconstruction, energy scales and resolutions; and the ±5% uncertainty in the integrated luminosity, derived following a methodology similar to that detailed in Ref. [90], from a calibration of the luminosity scale using x–y beam-separation scans performed in August 2015. Other uncertainties related to the jet quality requirements are negligible (< 1%).

Uncertainties affecting the signal acceptance, related to the generation of the signal samples, include uncertainties in the modeling of the initial- and final-state gluon radiation, as determined using simulated samples with modified parton-shower parameters (by factors of two or one half) that enhance or suppress the parton radiation; uncertainties due to PDF and variations of the $\alpha_s(m_Z)$ value employed, as computed from the envelope of CT10, MMHT2014 [91] and NNPDF30 error sets; and the choice of renormalization and factorization scales. In addition, theoretical uncertainties in the predicted cross sections, including PDF and renormalization and factorization scale uncertainties, are computed separately for the different models.

VIII. RESULTS AND INTERPRETATION

The number of events in data and the expected background predictions in several inclusive and exclusive signal regions, as determined using the global fit discussed in Sec. VID, are presented in detail in Table VII. The results for all the signal regions are summarized in Table VIII. Good agreement is observed between the data and the SM predictions in each case. The SM predictions for the inclusive selections are determined with a total uncertainty of ±4.0%, ±6.8%, and ±12% for the IM1, IM5, and IM7 signal regions, respectively, which include correlations between uncertainties in the individual background contributions.

Figure 3 shows several measured distributions compared to the SM predictions for $E_T^{miss} > 250$ GeV, for which the normalization factors applied to the MC predictions, and the related uncertainties, are determined from the global fit.
FIG. 3. Measured distributions of the E_T^{miss}, leading-jet p_T, leading-jet η, jet multiplicity, second-leading-jet p_T, and third-leading-jet p_T for the IM1 selection compared to the SM predictions. The latter are normalized with normalization factors as determined by the global fit that considers exclusive E_T^{miss} regions. For illustration purposes, the distributions of different ADD, SUSY, and WIMP scenarios are included. The error bands in the ratios shown in the lower panels include both the statistical and systematic uncertainties in the background predictions. The contributions from multijets and noncollision backgrounds are negligible and not shown in the figures.
carried out in exclusive E_T^{miss} bins. For illustration purposes, the distributions include the impact of different ADD, SUSY, and WIMP scenarios.

The level of agreement between the data and the SM predictions for the total number of events in the different inclusive signal regions IM1–IM7 is translated into upper limits for the presence of new phenomena. A simultaneous likelihood fit is performed in both the control and signal regions, separately for each of the inclusive regions IM1–IM7. As a result, model-independent 95% confidence level upper limits on the visible cross section, defined as the product of cross section, acceptance and efficiency, $\langle \sigma \epsilon \rangle_{\text{obs}}$, for the IM1–IM7 selections.

Table IX. Observed and expected 95% C.L. upper limits on the number of signal events, S_{obs}^{95} and S_{exp}^{95}, and on the visible cross section, defined as the product of cross section, acceptance and efficiency, $\langle \sigma \epsilon \rangle_{\text{obs}}$, for the IM1–IM7 selections.

<table>
<thead>
<tr>
<th>Signal channel</th>
<th>$\langle \sigma \epsilon \rangle_{\text{obs}}^{95}$ [fb]</th>
<th>S_{obs}^{95}</th>
<th>S_{exp}^{95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM1</td>
<td>553</td>
<td>1773</td>
<td>1864 $^{+829}_{-548}$</td>
</tr>
<tr>
<td>IM2</td>
<td>308</td>
<td>988</td>
<td>1178 $^{+541}_{-348}$</td>
</tr>
<tr>
<td>IM3</td>
<td>196</td>
<td>630</td>
<td>694 $^{+308}_{-204}$</td>
</tr>
<tr>
<td>IM4</td>
<td>153</td>
<td>491</td>
<td>401 $^{+108}_{-113}$</td>
</tr>
<tr>
<td>IM5</td>
<td>61</td>
<td>196</td>
<td>164 $^{+63}_{-45}$</td>
</tr>
<tr>
<td>IM6</td>
<td>23</td>
<td>75</td>
<td>84 $^{+32}_{-23}$</td>
</tr>
<tr>
<td>IM7</td>
<td>19</td>
<td>61</td>
<td>48 $^{+18}_{-13}$</td>
</tr>
</tbody>
</table>

The level of agreement between the data and the SM predictions is translated into limits on the parameters of the ADD model. Only the signal regions with $E_T^{\text{miss}} > 400$ GeV, where the SM background is moderate and the shape difference between signal and the SM background becomes apparent, have an impact on the ADD limits. The typical $A \times e$ of the selection criteria varies, as the number of extra dimensions n increases from $n = 2$ to $n = 6$, between 5.5% and 6.6% for IM4 and between 2.9% and 4.2% for IM7.

The experimental uncertainties related to the jet and E_T^{miss} scales and resolutions introduce uncertainties in the signal yields which vary between ±1% and ±3%. The uncertainties related to the modeling of the initial- and final-state gluon radiation translate into uncertainties in the ADD signal acceptance which vary between ±7% and ±10%. The uncertainties due to the PDFs, affecting the predicted signal cross sections, increase from ±16% at $n = 2$ to ±42% at $n = 6$. The effect of PDF uncertainties on the acceptance is between ±10% and ±20%, mildly increasing with increasing n and E_T^{miss}. Similarly, the variations of the renormalization and factorization scales introduce a ±23% to ±36% uncertainty in the signal yields, with increasing n and E_T^{miss} requirements, and about a ±10% variation in the signal acceptance.

Observed and expected 95% C.L. exclusion limits are set on M_D as a function of n using the CL$_{s}$H approach, for which a simultaneous fit to the signal and control regions in the exclusive E_T^{miss} bins is performed, including statistical and systematic uncertainties. Uncertainties in the signal acceptance times efficiency, the background predictions, and the luminosity are considered, and correlations between systematic uncertainties in signal and background predictions are taken into account. The fit accounts for the contamination of the control regions by signal events which a priori is estimated to be very small. In addition, observed limits are computed using ±1σ variations of the theoretical limits on M_D.
FIG. 4. Observed and expected 95% C.L. lower limits on the fundamental Planck scale in \(4 + n\) dimensions, \(M_D\), as a function of the number of extra dimensions. The shaded area around the expected limit indicates the expected \(\pm 1\sigma\) range of limits in the absence of a signal. Finally, the thin dashed line shows the 95% C.L. observed limits after the suppression of the events with \(s > M_D^2\) (damping) is applied, as described in the text. The results from this analysis are compared to previous results from the ATLAS Collaboration at \(\sqrt{s} = 8\) TeV [37].

predictions for the ADD theoretical cross sections result in about a 6% decrease in the nominal observed limits. Figure 4 and Table X present the results in the case of the ADD model. Values of \(M_D\) below 6.58 TeV at \(n = 2\) and below 4.31 TeV at \(n = 6\) are excluded at 95% C.L., which extend the exclusion from previous results using 8 TeV data [37].

As discussed in Refs. [5,37], the analysis partially probes the phase-space region with \(s > M_D^2\), where \(\sqrt{s}\) is the center-of-mass energy of the hard interaction. This challenges the validity of model implementation and the lower bounds on \(M_D\), as they depend on the unknown ultraviolet behavior of the effective theory. The observed 95% C.L. limits are recomputed after suppressing, with a weighting factor \(M_D^4/s^2\), the signal events with \(s > M_D^2\), here referred to as damping. This results in a decrease of the quoted 95% C.L. lower limit on \(M_D\) which is negligible for \(n = 2\) and about 5% for \(n = 6\).

B. Squark pair production

The results are translated into exclusion limits computed separately for stop pair production with \(\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0\), squark pair production with \(\tilde{q} \rightarrow q + \tilde{\chi}_1^0\) \((q = u, d, c, s)\), and sbottom pair production with \(\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0\), as a function of the squark mass for different neutralino masses. As an example, in the case of stop pair production the typical \(A \times \epsilon\) of the selection criteria varies, with increasing

stop and neutralino masses, between 0.7% and 1.4% for IM1 and between 0.06% and 0.8% for IM7. Observed and expected 95% C.L. exclusion limits are calculated using a simultaneous fit to the signal and control regions in exclusive \(E_T^{miss}\) bins, as in the case of the ADD models.

The systematic uncertainties in the SUSY signal yields are also determined following a procedure close to that for the ADD case. The uncertainties related to the jet and \(E_T^{miss}\) scales and resolutions introduce uncertainties in the signal yields which vary between \(\pm 0.2\%\) and \(\pm 7\%\) for different selections and squark and neutralino masses. In addition, the uncertainty in the integrated luminosity is included. The uncertainties related to the modeling of initial- and final-state gluon radiation translate into a \(\pm 7\%\) to \(\pm 17\%\) uncertainty in the signal yields. The uncertainties due to the PDFs result in a \(\pm 5\%\) to \(\pm 17\%\) uncertainty in the signal yields. Finally, the variations of the renormalization and factorization scales introduce a \(\pm 4\%\) to \(\pm 13\%\) uncertainty in the signal yields.

Figure 5 presents the results in the case of the \(\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0\) signal. The previous limits from the ATLAS Collaboration [10] are also shown. As anticipated, the monojetlike selection improves significantly the sensitivity at very low \(\Delta m\). In the compressed scenario with the stop and neutralino nearly degenerate in mass, the exclusion extends up to stop masses of 323 GeV. The region with \(\Delta m < 5\) GeV is not considered in the exclusion since in this regime the stop could become long lived. Figure 6 (left) presents the observed and expected 95% C.L.
exclusion limits as a function of the sbottom mass and the sbottom-neutralino mass difference for the $\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0$ decay channel. In the scenario with $m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0} \sim m_b$, this analysis extends the 95% C.L. exclusion limits up to a sbottom mass of 323 GeV. Similarly, Fig. 6 (right) presents the observed and expected 95% C.L. exclusion limits as a function of the squark mass and the squark-neutralino mass difference for $\tilde{q} \rightarrow q + \tilde{\chi}_1^0$ ($q = u, d, c, s$). In the compressed scenario with similar squark and neutralino masses, squark masses below 608 GeV are excluded at 95% C.L. These results significantly extend previous exclusion limits [10,93,94].

C. Weakly interacting massive particles

The results are translated into exclusion limits on the WIMP pair production, assuming the exchange of an axial-vector mediator in the s-channel. For on-shell WIMP pair production, where $m_A > 2m_s$, typical $A \times e$ values for the signal models with a 1 TeV mediator range from 25% to 2% for IM1 and IM7 selections, respectively.

The effect of experimental uncertainties related to jet and E_T's scales and resolutions is found to be similar to the effect in the ADD model. The uncertainty related to the modeling of the initial- and final-state radiation translates into ±20% uncertainty in the acceptance and is neglected for the cross section. The choice of different PDF sets results in up to ±20% uncertainty in the acceptance and ±10% uncertainty in the cross section. Varying the renormalization and factorization scales introduces ±5% variations of the cross section and a ±3% change in the acceptance. In addition, the uncertainty in the integrated luminosity is included.

Figure 7 (left) shows the observed and expected 95% C.L. exclusion limits in the $m_{\chi^0} - m_A$ parameter plane for a simplified model with an axial-vector mediator, Dirac WIMPs, and couplings $g_q = 1/4$ and $g_z = 1$. A minimal mediator width is assumed. In addition, observed limits are shown using ±1σ theoretical uncertainties in the signal cross sections. In the on-shell regime, the models with mediator masses up to 1 TeV are excluded. This analysis loses sensitivity to the models in the off-shell regime, where the decay into a pair of WIMPs is kinematically suppressed. The perturbative unitarity is violated in the parameter region defined by $m_{\chi^0} > \sqrt{\pi/2}m_A$ [95]. The masses corresponding to the correct relic density as measured by the Planck and WMAP satellites [35,36], in the absence of any interaction other than the one considered, are indicated in the figure as a line that crosses the excluded region at $m_A \sim 880$ GeV and $m_{\chi^0} \sim 270$ GeV. The region towards lower WIMP masses or higher mediator masses corresponds to dark matter overproduction. On the opposite side of the curve, other WIMP production mechanisms need to exist in order to explain the observed dark matter relic density.

In Fig. 7 (right) the results are translated into 90% C.L. exclusion limits on the spin-dependent WIMP-proton scattering cross section as a function of the WIMP mass, following the prescriptions explained in Refs. [41,42], and are compared to results from the direct-detection experiments XENON100 [96], LUX [97], and PICO [98,99]. This comparison is model dependent and solely valid in the context of this particular Z'-like model. In this case,
stringent limits on the scattering cross section of the order of 10^{-42} cm2 up to WIMP masses of about 300 GeV are inferred from this analysis, and complement the results from direct-detection experiments for $m_X < 10$ GeV. The loss of sensitivity in models where WIMPs are produced off-shell is expressed by the turn of the exclusion line, reaching back to low WIMP masses and intercepting the exclusion lines from the direct-detection experiments at around $m_X = 80$ GeV.

IX. CONCLUSIONS

In summary, results are reported from a search for new phenomena in events with an energetic jet and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV at the LHC, based on data corresponding to an integrated luminosity of 3.2 fb$^{-1}$ collected by the ATLAS experiment in 2015. The measurements are in agreement with the SM predictions.

The results are translated into model-independent 95% confidence-level upper limits on $\sigma \times A \times c$ in the range 553–19 fb, depending on the selection criteria considered. The results are presented in terms of lower limits on the fundamental Planck scale, M_D, versus the number of extra spatial dimensions in the ADD LED model. Values of M_D below 6.58 TeV at $n = 2$ and below 4.31 TeV at $n = 6$ are excluded at 95% C.L. Similarly, the results are interpreted in terms of the search for squark pair production in a compressed supersymmetric scenario. In the case of stop and sbottom pair production with $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^0$ and $\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0$, respectively, squark masses below 323 GeV are excluded at 95% C.L. In the case of squark pair production with $\tilde{q} \rightarrow q + \tilde{\chi}_1^0 (q = u, d, c, s)$ squark masses below 608 GeV are excluded. Altogether, these results extend the exclusion from previous analyses at the LHC.

Finally, the results are interpreted in terms of upper limits on the pair-production cross section of WIMPs. A simplified model is used with an axial-vector mediator, given couplings to fermions $g_{\tilde{q}} = 1$ and $g_q = 1/4$, and considering Dirac fermions as dark matter candidates. Mediator masses below 1 TeV are excluded at 95% C.L. for WIMP masses below 250 GeV. These results are translated, in a model-dependent manner, into upper limits on spin-dependent contributions to the WIMP-nucleon elastic cross section as a function of the WIMP mass. WIMP-proton cross sections above 10^{-42} cm2 are excluded at 90% C.L. for WIMP masses below 10 GeV, complementing results from direct-detection experiments.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT,
received support from BCKDF, the Canada Council, CANARIE, CRC, Compu...
LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
High Energy Physics Division, Argonne National Laboratory, Argonne IL, USA
Department of Physics, University of Arizona, Tucson AZ, USA
Department of Physics, The University of Texas at Arlington, Arlington TX, USA
Physics Department, University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Department of Physics, The University of Texas at Austin, Austin TX, USA
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, USA
Department of Physics, Humboldt University, Berlin, Germany
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
INFN Sezione di Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, USA
Department of Physics, Brandeis University, Waltham MA, USA
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, USA
Transilvania University of Brasov, Brasov, Romania
National Institute of Physics and Nuclear Engineering, Bucharest, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, USA
Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago, Chile
Departamento de Fisica, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Department of Modern Physics, University of Science and Technology of China, Anhui, China
Department of Physics, Nanjing University, Jiangsu, China
School of Physics, Shandong University, Shandong, China
Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP), China
Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, USA
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Dipartimento di Fisica, Università della Calabria, Rende, Italy
SEARCH FOR NEW PHENOMENA IN FINAL STATES WITH ...

PHYSICAL REVIEW D 94, 032005 (2016)
M. AABOUD et al.
PHYSICAL REVIEW D 94, 032005 (2016)

172Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173Department of Physics, University of Wisconsin, Madison WI, USA
174Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176Department of Physics, Yale University, New Haven CT, USA
177Yerevan Physics Institute, Yerevan, Armenia
178Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.
*Also at Department of Physics, King’s College London, London, United Kingdom.
\^Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
\$Also at Novosibirsk State University, Novosibirsk, Russia.
\&Also at TRIUMF, Vancouver BC, Canada.
\(Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
\[Also at Department of Physics, California State University, Fresno CA, USA.
\{Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
\|Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
\}Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
\^Also at Tomsk State University, Tomsk, Russia.
\(Also at Universita di Napoli Parthenope, Napoli, Italy.
\&Also at Institute of Particle Physics (IPP), Canada.
\(Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
\(Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\{Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
\[Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
\|Also at Louisiana Tech University, Ruston LA, USA.
\}Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
\}Also at Graduate School of Science, Osaka University, Osaka, Japan.
\{Also at Department of Physics, National Tsing Hua University, Taiwan.
\{Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
\\ Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.
\{Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
\^Also at CERN, Geneva, Switzerland.
\(Also at Georgian Technical University (GTU), Tbilisi, Georgia.
\(Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
\{Also at Manhattan College, New York NY, USA.
\|Also at Hellenic Open University, Patras, Greece.
\\ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
\{Also at School of Physics, Shandong University, Shandong, China.
\{Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\{Also at Section de Physique, Université de Genève, Geneva, Switzerland.
\\ Also at Eotvos Lorand University, Budapest, Hungary.
\\ Also at International School for Advanced Studies (SISSA), Trieste, Italy.
\(Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
\|Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
\{Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
\\ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
\{Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
\{Also at National Research Nuclear University MEPhI, Moscow, Russia.
\{Also at Department of Physics, Stanford University, Stanford CA, USA.
\{Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
\{Also at Flensburg University of Applied Sciences, Flensburg, Germany.
\{Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
\{Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.