Unraveling the cold response in Draba

von Meijenfeldt, N.

Citation for published version (APA):
Al-Shehbaz IA (1991) Novelties in Draba (Brassicaceae) from Venezuela, Ecuador, and Peru. Novon 1: 67-70
Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in...
the cold-responsive transcriptome. Plant Physiology 147: 263-279
Carpenter CD, Kreps JA, Simon AE (1994) Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiology 104: 1015-1025
Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690
Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiology 137: 961-968
REFERENCES


Novillo F, Medina J, Salinas J (2007) *Arabidopsis CBF1* and *CBF3* have a different function than *CBF2* in cold acclimation and define different gene classes in the *CBF* regulon. PNAS 104: 21002-21007


Stockinger EJ, Gilmour SJ, Thomashow MF (1997) *Arabidopsis thaliana CBF1* encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. PNAS 94: 1035-1040


Thomashow MF (2001) So what's new in the field of plant cold acclimation? Lots! Plant Physiology 125: 89-93


Xin Z, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. PNAS 95: 7799-7804
