Prevention, suppression, and resistance

Antiretroviral treatment for children with HIV in sub-Saharan Africa

Boerma, R.S.

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 9:
Sequencing pediatric antiretroviral therapy in the context of a public health approach

Ragna S. Boerma, T. Sonia Boender, Michael Boele van Hensbroek, Tobias F. Rinke de Wit, Kim C.E. Sigaloff

ABSTRACT

Introduction
As access to prevention of mother to child transmission (PMTCT) efforts have increased, the total number of children being born with HIV has significantly decreased. However, those children who do become infected after PMTCT failure are at particular risk of HIV drug resistance, selected by exposure to maternal or pediatric antiretroviral drugs used before, during or after birth. As a consequence, the response to antiretroviral therapy (ART) in these children may be compromised, particularly when non-nucleoside reserve transcriptase inhibitors (NNRTIs) are used as part of the first-line regimen. We review evidence guiding choices of first- and second-line ART.

Discussion
Children generally respond relatively well to antiretroviral treatment. Clinical trials show the superiority of protease inhibitor (PI) over NNRTI-based treatment in young children, but observational reports of NNRTI-containing regimens are usually favorable as well. This is reassuring as national guidelines often still recommend the use of NNRTI-based treatment for PMTCT unexposed young children, due to the higher costs of PIs. After failure of NNRTI-based first-line treatment, the rate of acquired drug resistance is high, but HIV may well be suppressed by PIs in second-line ART. By contrast, there are currently no adequate alternatives in resource-limited settings for children failing either first- or second-line PI-containing regimens.

Conclusions
Affordable salvage treatment options for children in resource-limited settings are urgently needed.
INTRODUCTION

The treatment of HIV-1 in children is more challenging than treatment in adults and is associated with an increased risk of virological failure. Children are vulnerable to developing HIV drug resistance due to various reasons such as variability in pharmacokinetics, limited pediatric treatment options, and lack of adherence support. Moreover, drug exposure as part of the prevention of mother-to-child transmission (PMTCT) can lead to pre-treatment drug resistance, thus diminishing the chance of treatment success.

Clinical trials have found that children under three years of age on protease inhibitor (PI)-based antiretroviral therapy (ART) experience less virological failure and death than children on non-nucleoside reverse transcriptase inhibitors (NNRTI)-based regimens, both in PMTCT exposed and unexposed children. The World Health Organization (WHO) therefore recommends all children below three years of age to receive a PI-based regimen (lopinavir/ritonavir [LPV/r]), regardless of history of PMTCT exposure. Unfortunately, despite these recommendations, the use of PIs for young children in low- and middle-income countries (LMIC) in routine programs is limited due to practical barriers. PIs are more costly than NNRTIs, and infant formulations were, until recently, only available as a liquid that requires refrigeration.

In this commentary, we will compare PI-based versus NNRTI-based first-line ART for children, and discuss feasible ART sequencing approaches in children.

DISCUSSION

More than half of HIV-positive children who do not receive treatment are estimated to die before the age of two years. ART dramatically reduces morbidity and mortality in HIV-infected children of all ages. Findings of previous systematic reviews are encouraging as up to 70-80% of children achieve virological suppression rates after twelve months of first-line treatment. In young children under three years of age, data from clinical trials and observational studies in resource-limited settings (RLS) show that, on average, the HIV suppression rate is sustained around 60-70% up to 24 months after treatment initiation (Figure 1).
Based on data from clinical trials26,49,177, the WHO has moved to recommending PI-based first-line ART for all children below three years old, regardless of previous PMTCT exposure. Comparison of trials and observational data reveals higher rates of virological suppression among children receiving PI-based regimens (Figure 1). However, data on PI-based first line treatment in children are still scarce, compared to NNRTI-based treatment, and most available PI data come from clinical trials with a relatively short follow up period. The PRO60 trial, a multicenter trial conducted in South Africa, Zimbabwe, Zambia, Malawi, Uganda, Tanzania, and India, compared 288 children treated with AZT and 3TC combined with either NVP or LPV/r in children up to three years of age using the primary end point of treatment failure or discontinuation after 24 weeks. Both among PMTCT exposed and unexposed children, significantly more children reached the primary end point in the NVP group compared to the LPV/r group: 40.8\% versus 19.3\% (p<0.001)26,49. By contrast, a study performed in South Africa by Teasdale et al reported 27\% virological failure among children after 24 weeks of first-line PI-based treatment178. The higher failure rate in this cohort may be due to the fact that children received either ritonavir-boosted lopinavir (LPV/r) or full-dose ritonavir, which is associated with diminished virological response and the emergence of major protease mutations179. Programmatic data, as have

Figure 1. Summary estimates of virological suppression in children <3 years in LMIC, 6 to 24 months after first-line treatment initiation for NNRTI- and PI-treated children

Random effects meta-analysis was conducted using a Freeman-Tukey arcsine square root transformation to stabilize proportions. No virological suppression rates were available for PI-treated children after 18 and 24 months. NNRTI: non-nucleoside reverse transcriptase inhibitor; PI: protease inhibitor.
to date been reported mainly from South Africa180,181 will be very valuable to assess whether
the favorable virological suppression rates reported by trials can be achieved in routine
ART programs.

Most data on the effectiveness of NNRTI-based first-line treatment come from pro-
grammatic settings. A retrospective cohort of 202 children starting NNRTI-based first-
line treatment in Thailand reported that 33 (16\%) children had virological failure in the
first year of treatment182. Children on NVP-based treatment were 3.3 times more likely to
develop failure compared to children on EFV-based treatment. This study found no differ-
ence between young children with and without previous PMTCT exposure: 1 out of 4 and
4 out of 16 children developed virological failure during the study period, respectively182.
Two studies from sub-Saharan Africa show concordant results. Lowenthal et al describe a
cohort study in Botswana with five years of follow up including 804 children starting on
EFV or NVP based first-line treatment. The virological failure rate was 6.7\% after one year,
10.2\% after two years, and 12.8\% after five years of follow up on EFV-based treatment,
and 12.8\%, 19.8\% and 25.1\%, respectively, for NVP-based treatment183. In a cohort of 198
Zambian ART naïve children, mostly PMTCT unexposed, children started either NVP or
EFV based treatment. Six to 24 months after treatment initiation, the virological failure
rate increased from 11.5\% to 22.2\%184.

Interpretation of the differences between PI- and NNRTI-treated children is limited
by the heterogeneity of studies in terms of design, study participants and setting. It is
difficult to draw firm conclusions on the benefits of PI- over NNRTI-treatment in pro-
grammatic settings, especially in PMTCT unexposed young children. However, results
from randomized controlled trials have convincingly shown the superiority of PI- over
NNRTI-based treatment16,49, and PI-based treatment should be implemented for all
HIV-infected children <3 years of age, as recommended by the WHO40. The outcomes
of observational studies reporting on programmatic data remain relevant, because the
dispensation of PIs may be influenced by financial and logistical issues. LPV/r, currently
the only PI combination available for children, is at least five times more expensive than
EFV or NVP27. Recently, the United States Food and Drug Administration (FDA) has ap-
proved LPV/r in pellet form for pediatric usage, which, in contrast to the up to now only
available LPV/r syrup, does not require refrigeration75. This is an important step towards
increased access to PI-treatment for children in LMIC.
HIV-TB coinfection

Tuberculosis (TB) is one of the most common co-infections affecting children with HIV and co-treatment occurs in up to one-third of children\(^{180}\). Co-medication for TB adds significant complexity to the treatment of children who also require or are already receiving ART. For children on LPV/r-based regimens, guidelines suggest to add ritonavir to achieve the full therapeutic dose\(^{20}\). An alternative is to change to a triple NRTI regimen\(^{185}\) or to substitute NVP for LPV/r\(^{20}\). Children on NVP- or EFV-based ART can usually continue the same regimen (ensuring that NVP dose is 200 mg/m\(^2\)) or can also be changed to a triple NRTI regimen. These changes in the ART regimen, as well as simultaneous use of TB drugs puts children at risk of developing drug toxicity, virological failure\(^{180}\), and HIV drug resistance\(^{186}\).

Development of resistance on first-line therapy

Virological failure is defined by the WHO as two consecutive measurements of plasma viral load >1000 cps/ml after at least six months of treatment\(^{20}\). However, WHO definitions have changed over time and studies have reported different virological cut-offs to define failure. A systematic review of resistance data in children from resource-poor settings found that 90% of those failing first-line regimens had at least one HIV drug resistance mutation, with mutations increasing in frequency with longer duration of treatment\(^{111}\). This review included mostly cross-sectional studies and included children who were treated with suboptimal regimens.

More recent studies also show high rates of HIV drug resistance among children with treatment failure. In a study conducted in the Central African Republic, 83% and 85% of children on first line therapy with a detectable viral load after 18 months had NRTI and NNRTI mutations, respectively. The most prevalent NRTI mutations were M184V (73%), T69D/N/S (17%), L74I/V (8%), K65R (8%), and Q151M (2%), and the most prevalent NNRTI mutations were Y181C (44%), K103H/N/S (39%), K101E/P (39%), G190A (30%), and A98G/S (19%)\(^{187}\).

In Thai children treated with NVP or EFV containing therapy, NRTI mutations were found in 89% of children at the time of virological failure, with M184V/I (85%), K65R (11%), and K219Q/E (8%) being the most prevalent. NNRTI mutations were detected in 97% of the children, of which Y181C/I (58%), K103N (34%), G190S/A (18%), and V108I (13%), were most common\(^{182}\).

It is clear from these studies that children who fail NNRTI-based first-line regimens, generally report similarly high rates of NNRTI and NRTI-associated mutations, with
the Y181C and M184V mutation being among the most prevalent mutations within the respective drug classes. Accumulated NRTI resistance can have consequences for the construction of an effective second-line PI-based regimen, in which NRTIs are used as the backbone. This implies that a timely switch to second-line ART after failure is warranted, to prevent clinical consequences as well as the accumulation of drug resistance. Timely switching is, however, challenged by lack of virological monitoring in resource-limited setting. Reluctance of clinicians to change therapy in children, for whom limited drug options are available, may be an additional barrier.

In a European study, the development of both PI and NRTI resistance among children failing first-line PI-based regimens was negligible\(^{188}\). In resource-limited settings there are few reports of acquired protease mutations on first-line treatment. A recent South-African study found that 8 of 75 (10.7\%) children with virological failure on a first-line PI had LPV/r mutations\(^{189}\). Within the NRTI drug class, the M184V and thymidine analog mutations (TAMs) were found in 7 out of 8 and 2 out of 8 children, respectively. Data among adults have shown that with intensified adherence support, viral load resuppression on PI-based ART is possible, despite drug resistance\(^{190}\). In this study, performed in Khayelitsha, South Africa, two-thirds of participants resuppressed within three months while remaining on PI-based regimens. The consequences of this study obviously extend to children receiving PIs; intensive adherence counselling should be offered before switching.

Second-line ART

As per WHO recommendation, failure of an NNRTI-based regimen is followed by switching to a boosted PI plus two NRTIs. There is limited data about the response to second-line ART in children\(^{128}\). A recent study from Thailand reported on 111 children among whom the risk of virological failure 24 months after second-line initiation was 41\%.\(^{140}\) Children with longer duration of first-line ART were at higher risk of second-line failure. The latter suggests that continued first-line failure may have led to the accumulation of NRTI mutations, diminishing the response to subsequent second-line therapy. However, in the study’s multivariate analysis resistance to NRTIs did not appear as a risk factor for failure.

For children for whom a PI-based first-line regimen has failed, NNRTIs remain the only new drug class that can be introduced. However, potential re-emergence of archived NNRTI mutations may limit the effectiveness of this ART sequencing approach. Moreover, NNRTIs have a much lower genetic barrier for resistance\(^{135}\), and without the protection
of an effective NRTI backbone (due to acquired resistance), NNRTI resistance will rapidly emerge. Recently, the first reports on the outcome of second-line NNRTI in children have been published. One small study from South Africa found that six months after regimen change, the proportion with virologic failure was 75% (6 of 8) in children receiving NNRTI-based second-line versus 20% (13 of 66) in children on PI-based second-line191. A second study, again from South Africa, reported on twelve children who were switched to NNRTI-based therapy. Of these, 8/12 (67%) did not achieve virological suppression189. Although these findings are based on a small number of children, it is apparent that NNRTI-based second-line ART is not an optimal choice and is expected to have limited durability.

Salvage options

Constructing third-line regimens using novel, robust drugs such as darunavir, raltegravir or dolutegravir, may be possible for children. Studies have demonstrated the efficacy of darunavir in heavily ART experienced patients192. In a UK cohort, even in children with prolonged PI exposure, resistance to darunavir was rare193. Darunavir could therefore be an option after failure of first-line LPV/r-based treatment in children above three years of age. Raltegravir is the first integrase inhibitor approved for pediatric usage (>4 weeks of age) and has been evaluated in the IMPAACT P1066 trial, showing virological suppression (<400 cps/ml) in 80% of participants after 48 weeks of follow-up194. In adults, co-administration of rifampicin decreases raltegravir concentrations, thereby potentially limiting the efficacy of this drug in children with HIV-TB coinfection195. Dolutegravir, an integrase strand transfer inhibitor with a very favorable resistance profile, has to date only been approved in children >12 years of age. Results of two cohorts of the IMPAACT 1093 trial have been presented in abstract form and showed virological suppression in 17/23 treatment-experienced adolescents (aged 12-18 years) after 48 weeks of treatment with dolutegravir, and in 9/11 treatment-experienced children (aged 6-12 years) after 24 weeks of treatment196,197. These newer antiretroviral agents however, are currently unavailable in resource-limited settings. Substantial cost-reduction and/or generic production of these drugs is vital to ensure salvage options for children failing PI-based regimens.
Table 1. Studies reporting virological suppression rates in children <3 years on first-line ART 6-24 months after treatment initiation.

<table>
<thead>
<tr>
<th>Study</th>
<th>Median year of treatment initiation</th>
<th>Regimen</th>
<th>Total number of patients</th>
<th>Number of patients with viral suppression</th>
<th>% children with virological suppression</th>
<th>Time after treatment initiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockman2007*</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>12</td>
<td>11</td>
<td>91.7</td>
<td>6 months</td>
</tr>
<tr>
<td>Lockman2007**</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>11</td>
<td>1</td>
<td>9.1</td>
<td>6 months</td>
</tr>
<tr>
<td>Puthanakit2009*</td>
<td>2004</td>
<td>NNRTI-based</td>
<td>25</td>
<td>14</td>
<td>56.0</td>
<td>6 months</td>
</tr>
<tr>
<td>Germanaud2010**</td>
<td>2007</td>
<td>NNRTI-based</td>
<td>68</td>
<td>43</td>
<td>63.2</td>
<td>6 months</td>
</tr>
<tr>
<td>Van Dijk2011**</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>96</td>
<td>85</td>
<td>88.5</td>
<td>6 months</td>
</tr>
<tr>
<td>Cotton2013**</td>
<td>2006</td>
<td>PI-based</td>
<td>230</td>
<td>192</td>
<td>83.5</td>
<td>6 months</td>
</tr>
<tr>
<td>Romano Mazzotti2009*</td>
<td>not reported</td>
<td>PI-based</td>
<td>56</td>
<td>21</td>
<td>37.5</td>
<td>6 months</td>
</tr>
<tr>
<td>Technau2014***</td>
<td>2006</td>
<td>PI-based</td>
<td>2612</td>
<td>1763</td>
<td>67.5</td>
<td>6 months</td>
</tr>
<tr>
<td>Lindsey2014*</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>116</td>
<td>86</td>
<td>74.1</td>
<td>6 months</td>
</tr>
<tr>
<td>Lindsey2014*</td>
<td>2008</td>
<td>PI-based</td>
<td>124</td>
<td>112</td>
<td>90.3</td>
<td>6 months</td>
</tr>
<tr>
<td>Lindsey2014**</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>68</td>
<td>55</td>
<td>80.1</td>
<td>6 months</td>
</tr>
<tr>
<td>Lindsey2014**</td>
<td>2008</td>
<td>PI-based</td>
<td>71</td>
<td>67</td>
<td>94.4</td>
<td>6 months</td>
</tr>
<tr>
<td>Meyers 2011*</td>
<td>2006</td>
<td>PI-based</td>
<td>617</td>
<td>323</td>
<td>52.4</td>
<td>6 months</td>
</tr>
<tr>
<td>Lockman2007**</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>11</td>
<td>10</td>
<td>90.9</td>
<td>12 months</td>
</tr>
<tr>
<td>Lockman2007*</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>10</td>
<td>1</td>
<td>10.0</td>
<td>12 months</td>
</tr>
<tr>
<td>Jaspan2008*</td>
<td>2004</td>
<td>PI-based</td>
<td>85</td>
<td>60</td>
<td>70.6</td>
<td>12 months</td>
</tr>
<tr>
<td>Jaspan2008</td>
<td>2004</td>
<td>NNRTI-based</td>
<td>115</td>
<td>47</td>
<td>40.9</td>
<td>12 months</td>
</tr>
<tr>
<td>Prendergast2008</td>
<td>2004</td>
<td>PI-based</td>
<td>49</td>
<td>44</td>
<td>89.8</td>
<td>12 months</td>
</tr>
<tr>
<td>Puthanakit2009</td>
<td>2004</td>
<td>NNRTI-based</td>
<td>24</td>
<td>19</td>
<td>79.2</td>
<td>12 months</td>
</tr>
<tr>
<td>Van Dijk2011</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>77</td>
<td>68</td>
<td>88.3</td>
<td>12 months</td>
</tr>
<tr>
<td>Romano Mazzotti2009</td>
<td>not reported</td>
<td>PI-based</td>
<td>56</td>
<td>30</td>
<td>53.6</td>
<td>12 months</td>
</tr>
<tr>
<td>Soeters2014</td>
<td>2011</td>
<td>PI-based</td>
<td>118</td>
<td>61</td>
<td>51.7</td>
<td>12 months</td>
</tr>
<tr>
<td>Technau2014</td>
<td>2006</td>
<td>PI-based</td>
<td>2165</td>
<td>1595</td>
<td>73.7</td>
<td>12 months</td>
</tr>
<tr>
<td>Puthanakit2009</td>
<td>2004</td>
<td>NNRTI-based</td>
<td>19</td>
<td>16</td>
<td>84.2</td>
<td>18 months</td>
</tr>
<tr>
<td>Van Dijk2011</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>53</td>
<td>46</td>
<td>86.8</td>
<td>18 months</td>
</tr>
<tr>
<td>Kay2012**</td>
<td>2007</td>
<td>NNRTI-based</td>
<td>34</td>
<td>19</td>
<td>55.9</td>
<td>18 months</td>
</tr>
<tr>
<td>Lockman2007**</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>9</td>
<td>1</td>
<td>0.11</td>
<td>24 months</td>
</tr>
<tr>
<td>Lockman2007*</td>
<td>2001</td>
<td>NNRTI-based</td>
<td>11</td>
<td>9</td>
<td>81.8</td>
<td>24 months</td>
</tr>
<tr>
<td>Puthanakit2009</td>
<td>2004</td>
<td>NNRTI-based</td>
<td>15</td>
<td>14</td>
<td>93.3</td>
<td>24 months</td>
</tr>
<tr>
<td>Van Dijk2011</td>
<td>2008</td>
<td>NNRTI-based</td>
<td>27</td>
<td>21</td>
<td>77.8</td>
<td>24 months</td>
</tr>
<tr>
<td>Musiime2014</td>
<td>2011</td>
<td>NNRTI-based</td>
<td>349</td>
<td>294</td>
<td>84.2</td>
<td>24 months</td>
</tr>
</tbody>
</table>

*: PMTCT unexposed cohort; **: PMTCT exposed cohort. NNRTI: non-nucleoside reverse transcriptase inhibitor; PI: protease inhibitor.
CONCLUSIONS

Despite the challenges of pediatric antiretroviral treatment, especially in resource-limited settings, studies have shown relatively high rates of virological suppression in children on first-line treatment. For young children, randomized controlled trials have shown the superiority of PI- over NNRTI-based treatment. Observational studies, however, also report favorable results of NNRTI-based first-line treatment. This has important implications for settings in which PI-treatment is unavailable due to logistic and financial barriers. Unquestionably, early initiation of treatment is vital and should be prioritized even if NNRTIs are the only obtainable drugs.

After NNRTI-based first-line treatment failure, the rates of acquired drug resistance among children are strikingly high. However, these children are likely to still benefit from PIs in second-line. By contrast, the development of resistance mutations after failure of PI-based first-line is limited. If children do have continued failure on first-line LPV/r, the chances of resuppression after switching to second-line NNRTI are very low. Suitable formulations of additional PIs are urgently needed for children who fail either first- or second-line LPV/r. Darunavir boosted with ritonavir (DRV/r) would be a suitable candidate, but is not widely available. Newer antiretroviral agents including second-generation NNRTIs and integrase inhibitors should also be evaluated. The future of an increasing number of children will depend on the availability of these salvage medications. To make these regimens accessible on a global scale, low-cost generic drugs or major price reductions of patented versions are necessary.

Acknowledgements

We thank Ingeborg Nagel and René Spijker for librarian assistance with the literature search. Funding: none.

Authors’ contributions

KS conceived the manuscript and wrote the first draft. RB performed the literature review and finalized the manuscript. SB, MB and TW participated in the discussion of results and critically reviewed the final paper.