The Solitude of Relevant Documents in the Pool

Lipani, A.; Lupu, M.; Kanoulas, E.; Hanbury, A.

DOI
10.1145/2983323.2983891

Publication date
2016

Document Version
Final published version

Published in
CIKM'16

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):
The Solitude of Relevant Documents in the Pool

Aldo Lipani1 Mihai Lupu1 Evangelos Kanoulas1 Allan Hanbury1
1Inst. of Software Technology & Interactive Systems, Vienna University of Technology, Vienna, Austria (lipani, lupu, hanbury)@ifs.tuwien.ac.at
2Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands e.kanoulas@uva.nl

\section*{ABSTRACT}
Pool bias is a well understood problem of test-collection based benchmarking in information retrieval. The pooling method itself is designed to identify all relevant documents. In practice, ‘all’ translates to ‘as many as possible given some budgetary constraints’ and the problem persists, albeit mitigated. Recently, methods to address this pool bias for previously created test collections have been proposed, for the evaluation measure precision at cut-off ($P\text{@}n$). Analyzing previous methods, we make the empirical observation that the distribution of the probability of providing new relevant documents to the pool, over the runs, is log-normal (when the pooling strategy is fixed depth at cut-off). We use this observation to calculate a prior probability of providing new relevant documents, which we then use in a pool bias estimator that improves upon previous estimates of precision at cut-off. Through extensive experimental results, covering 15 test collections, we show that the proposed bias correction method is the new state of the art, providing the closest estimates yet when compared to the original pool.

\section*{Keywords}
Pool bias, $P\text{@}n$, test collections, TREC

1. INTRODUCTION
The pool bias refers to an undesirable side effect caused by the use of the pooling method. This bias manifests itself by the discounting of Information Retrieval (IR) systems when tested on previously built test collections, due to the retrieval of potentially relevant but non-judged documents [4]. An IR test collection is composed of: a collection of documents, a set of topics, and ideally a complete set of paired relations between topics and documents called relevance assessments, which indicate whether a document is either relevant or non-relevant for a given topic. Soon in the history of IR, with the explosion in size of the document collections and therefore of the number of relevance assessments required, the building of such test collections became impractical; to address this issue, the pooling method was introduced [9].

The main advantage of the pooling method is to limit the number of relevance assessments through the use of previously collected search results provided by various retrieval systems. The first introduced and most commonly used pooling strategy is the fixed-depth at n. This strategy consists in selecting the top n documents retrieved by each retrieval system, then collecting them in a set, called the pool, which later will be fully judged. Although its main limitation is due the introduced incompleteness of the relevance assessments, as pointed out by Spärck Jones [3], the aim of the pooling method is not to find all the relevant documents but an unbiased sample of them. However, this is not an easy problem because, in the absence of full evaluation, and in the presence of millions of potentially relevant documents, there is no guarantee that a future retrieval method will not retrieve completely different yet relevant documents.

There are three ways to mitigate the pool bias: 1) increasing the depth of the pool, 2) increasing the number of topics, which would reduce the variance and, 3) increasing the number of pooled runs, which should increase the diversity of the pooled documents. Each of them has as effect an increment on the number of judgments to be performed. However, only the first two solutions are directly controllable by the test collection builder, leaving the third to the participation of the IR community in solving the challenge for which the test collection is going to be built.

To tackle the pool bias issue, the IR community has pursued two research paths, one developing pooling strategies aimed at mitigating the pool bias when creating new test collections [2, 8, 7] and the other, developing pool bias estimators aimed at correcting the observed pool bias on existing test collections. Witnessing an explosion in the number of test collections developed each year that use the pooling method with fixed-depth at n pooling strategy and an increasing bias due to an increasing trend in the creation of test collections for niche domain-specific IR, when a required minimal participation is usually not met, in this paper we extend the work done on the latter research path. We develop a new pool bias estimator for the metric Precision at cut-off ($P\text{@}n$) based on empirical observations. There are two reasons for working with such a simple metric: there is an increasing demand from practitioners for metrics that make ‘sense’ [1], and it is a corner stone for other more complex metrics.

2. BACKGROUND
Webber and Park [10] introduced a method to correct the pool bias, which they tested on Rank-Biased-Precision at cut-off but claimed to work also with $P\text{@}n$. This method adds to the score of a new run a coefficient equal to the mean difference, indicated with $\delta P\text{@}n$, between the score obtained when a run, initially part of the pool
relevant: as the probability of the non-judged documents of the run to have if it had not been pooled. This quantity may be interpreted uniquely identified relevant documents discovered by pooling the run.

To find a better estimate, we look at the ratio between the number of runs, where the function changes the rank of the documents in the pooled runs based on the shared documents with the new run. After having computed these quantities, an indicator is calculated based on them, and used to trigger or not the correction method. If triggered, the correction is equal to the ratio between the non-judged documents over \(n\) times the maximum likelihood estimator for the probability of relevance of the non-judged documents in the run.

3. ANALYSIS

In this section we analyze empirically the assumptions about the Webber approach [10]. The mean in Eq. (2) is valid under the assumption that the distribution of \(\delta P_{Dn}\), as defined in Eq. (1), is normal. This assumption implies that runs are similar to each other, which is of course not true. To empirically demonstrate the groundlessness of this hypothesis, we observe in Fig. 1, on the top, that the distribution of the \(\delta P_{Dn}\) is not normally distributed. This makes the estimate for the correction biased for a new run because the distribution of runs is not centered on the calculated mean.

To find a better estimate, we look at the ratio between the number of uniquely identified relevant documents discovered by pooling the run \(r_p\) and the number of non-judged documents that the run would have if it had not been pooled. This quantity may be interpreted as the probability of the non-judged documents of the run to be relevant:

\[
P(d \in [r_p]_D \setminus Q_{R_e}(r_p), d \in Q_{R_e}) = \frac{P_{\bar{D}n}(r_p, Q_{R_e}) - P_{Dn}(r_p, Q_{R_e} \setminus (r_p))}{1 - (P_{\bar{D}n}(r_p, Q_{R_e} \setminus (r_p)) + P_{Dn}(r_p, Q_{R_e} \setminus (r_p)))} = \frac{\delta P_{Dn}(r_p)}{E_{\bar{D}n}(r_p)}
\]

where we use the notation introduced by Lipani et al. [5]: \(E_{\bar{D}n}\) is the ratio between the number of non-judged documents and \(n\) when \(r_p\) is not in the pool; \(P_{\bar{D}n}\) is the anti-precision at cut-off, also known in statistics as the false discovery rate, the ratio between the number of non-relevant documents and \(n\); and \(Q_{R_e}\) is the set of pooled documents that are relevant. We observe empirically that its distribution is log-normal. Indicating with \(X\) this distribution and with \(Y\) its log-transformation \(Y = \ln(X)\), \(Y\) is normally distributed. In the Q-Q plot in Fig. 1 on the bottom, we observe how the theoretical normal distribution correlates with the sample distribution. To calculate the mean of the new estimate, we compute the mean of the distribution \(Y\) and then transform it back to the domain of the distribution \(X\), which leads to the geometric mean of the \(X\):

\[
e^{E[\ln(X) \mid Y]} = e^{E[Y]} = \sqrt[|Y|]{\prod_{y \in Y} y} = \text{GM}[X]
\]
Algorithm 1 Revised estimator based on the Webber approach

\[
\begin{align*}
 r_u & \leftarrow \text{unpooled run} \\
 R_p & \leftarrow \text{set of pooled runs} \\
 T & \leftarrow \text{set of topics} \\
 Q & \leftarrow \text{qrels on T derived from } R_p \\
 s_{r_u} & \leftarrow P@n(r_u, Q) \\
 k_{r_u} & \leftarrow 1 - (s_{r_u} + P@n(r_u, Q)) \\
 \text{for all } r_p \in R_p \text{ do} \\
 \quad R_p' & \leftarrow R_p \setminus \{r_p\} \\
 \quad Q' & \leftarrow \text{qrels on T derived from } R_p' \\
 \quad s_{r_p}' & \leftarrow P@n(r_p, Q') \\
 \quad \delta P_{r_p} & \leftarrow P@n(r_p, Q) - s_{r_p}' \\
 \quad k_{r_p}' & \leftarrow 1 - (s_{r_p}' + P@n(r_p, Q')) \\
 \text{end for} \\
 \alpha & \leftarrow k_{r_u} \cdot \text{GM}_{r_p \in R_p} [\delta P_{r_p} / k_{r_p}'] \\
 \text{return } s_{r_u} + \alpha
\end{align*}
\]

For a run \((r_u \notin R_p)\) the following function:

\[
k@n(r_u) \cdot \text{GM}_{r_p \in R_p} [\delta P_{r_p} / k_{r_p}']
\]

Comparing Eq. (2) and Eq. (5) we notice that the numerator of this last equation is the same, but with the difference that now, every \(\delta P@n\) gets divided by the number of uniquely identified documents provided to the pool, and then multiplied by the same but for \(r_u\), and the arithmetic mean has been substituted by the geometric mean.

However, Eq. (4) is only valid when \(X\) is well behaved in the sense of not having zero values. Considering this, in Eq. (5) it mandates the removal of those runs for which \(\delta P_{r_p}\) is zero. This is reasonable because: first, if \(\delta P_{r_p} \neq 0\) it can be shown that \(k_{r_p}' \neq 0\) and consequently the fraction in Eq. (5) is well defined. Second, such zero values bring no information to our estimate of the contribution of the run. In fact, one could generate an unbounded number of runs with \(\delta P_{r_p} = 0\).

In Alg. 1 we make use of Eq. (5), filtering out 0 values, and redefining the previous Webber approach. Two benefits of this modification are that no longer every correction is based on a prior probabilistic model, and then multiplied by the same but for \(r_u\), and the arithmetic mean has been substituted by the geometric mean.

4. EXPERIMENTS & RESULTS

In this section, we present the experimental setup and the material used. It follows the methodology previously used by the already mentioned studies [10, 5, 6]. In the second part, we discuss the results.

4.1 Material & Experimental Setup

To test the effectiveness of the new algorithm, we tested\(^1\) the method on 15 test collections sampled from the TREC evaluation campaign: 7 from the Ad Hoc track, 3 from the Web track, and 1 from each of the Genomics, Robust, Legal, Medical, and Microblog tracks. This sample allowed us to also explore more specific IR domains, where a different behavior may be expected. The experiments consist in running repeated simulations, where a run at each iteration is taken out of the pool with all the runs submitted by the same organization, and a synthetic pool is generated, in a leave-one-organization-out fashion. This is done to better simulate the absence of any similar run added to the pool by the same organization. Moreover, to avoid the presence of runs produced by buggy implementations of IR search engines, the bottom 25% of poorly performing runs are filtered out.

To measure the effectiveness of the different approaches, three measures are used: Mean Absolute Error (MAE), System Rank Error (SRE) and System Rank Error with statistical significance (SRE*). MAE measures the mean of the absolute difference of runs’ scores when in the pool and when not. SRE measures the difference in ranks between the true ranking and new ranking with using the corrections. Finally, SRE* is similar to SRE, but counts the difference only if statistically significant (paired t-test, \(p < 0.05\)). We compared the new approach with the previously mentioned Webber and Lipani approaches, and the baseline, which is the Reduced Pool. The Reduced Pool measures the bias we get if no correction is provided.

4.2 Results

In Tab. 1 the full results are presented. We observe that our approach is top performer in the majority of the cases (45 for MAE, 37 for SRE and 9 for SRE*), with some worst results (15 for MAE, 16 for SRE and, 6 for SRE*) mostly obtained on Ad Hoc 7 and Ad Hoc 8, where the Lipani approach performs better. The Lipani approach, although in general it is not as good as our approach, which has a more stable behavior, collecting fewer worst results (9 for MAE, 6 for SRE and, 1 for SRE*). The Webber approach and the Reduced Pool are the ones that get the majority of the worst results, as also demonstrated in previous work [5].

When our approach is applied to the test collections: Ad Hoc 3, Ad Hoc 5, Ad Hoc 7, Ad Hoc 8, Web 9, Web 2002, Genomics 2005 and Microblog 2011 we can observe that the MAE for the correction applied to \(P@5\) gets the worst score (8 of the 15 worst performer cases mentioned above). Here, after an empirical analysis, we have two hypotheses for why this happens, and we claim that it happens for a combination of both. The first hypothesis relies on the observation that for such test collections, the ratio between the number of pooled runs and the number of organizations is much greater than 1. This means that multiple runs from the same organization have been pooled and therefore contribute a very similar set of documents to the pool. Thereby, it nullifies the leave-one run-out approach embedded in our and the Webber methods, as shown in Eq. (2) and (5), looking inside \(E\) in the first and \(GM\) in the second equation, when the run \(r_p\), originally in the pool \(Q_{r_p}\), is removed from the pool \(Q_{r_p}\setminus\{r_p\}\). Note that this leave-one run-out approaches inside the algorithm and is different from the leave-one organization-out testing procedure that happens before the algorithm is triggered. However, for Legal 2006 and Medical 2011, although the ratio is also large, we may not observe the same effect due the more shallow pool depth. The second hypothesis is that when we want to count the number of relevant documents of a run and we have such large number of relevance judgments, there is a high likelihood that the top documents of every run have been already pooled by other runs. This means that, as for the first hypothesis, the effect of the leave-one run-out embedded in the method is nullified. We split these two hypotheses because they have a different nature, although they have the same effect that can be mitigated by the same solution.

In general, these two hypotheses cause a significant error due to the fact that the number of points collected in order to compute an unbiased estimate of the geometric mean is insufficient. When these sets are small, it means that either there are no non-judged documents, or the ones that exist bring no new information in terms

\(^1\)The software is available on the website of the first author.
Table 1: Summary of the results per test collection generated through a leave-one-organization-out using the top 75% of the best performing pooled runs. With: \(|R| \) number of runs submitted, \(|O| \) number of organizations involved, \(|R_p| \) number of pooled runs, \(d \) depth of the pool and \(T \) number of topics. Last row counts how many times each approach per metric performed best or worst, tied not included.

<table>
<thead>
<tr>
<th>Track</th>
<th>P@n</th>
<th>Our approach</th>
<th>Lipani</th>
<th>Reduced Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M@E SRE S@E</td>
<td>M@E SRE S@E</td>
<td>M@E SRE S@E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. CONCLUSION

We have presented a new approach, empirically justified, to correct the pool bias for the evaluation measure \(P@n \). The method is based on new insights on the fixed-depth at \(n \) pooling strategy, namely the observation of a relation between the probability of a run to provide uniquely identified relevant documents to the pool and the log-normal distribution. The proposed method largely outperformed the previous approaches, although for two test collections, Ad Hoc 7 and Ad Hoc 8, where the Lipani estimator works better. We identified two hypotheses that would explain the worst and the log-normal distribution. The method largely outperformed the previous approaches, both of which tracing their source to situations where, for the metric at hand, the vast majority of runs have all of their documents judged in the reduced pool. A cross comparison between the algorithm of the Lipani estimator and the algorithm presented here shows some similarities which may inspire a new improvement on the correction of the pool bias.

Acknowledgments

This research was partially supported by the Austrian Science Fund (FWF) project number P25905-N23 (AdmIRE), and by the Google Faculty Award Research Scheme. All authors represent the opinions of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

6. REFERENCES