Radiating top quarks

Gosselink, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Introduction

1. Top quark physics
 1.1 Physics at the LHC .. 5
 1.2 Understanding the top quark 9
 1.2.1 Mass .. 9
 1.2.2 Decay ... 10
 1.2.3 Pair production 11
 1.2.4 Single top production 18
 1.3 Top quarks at the LHC 19
 1.3.1 Parton distribution functions 19
 1.3.2 Top quark mass and the Higgs boson 21
 1.3.3 Non-Standard Model top decays and \(t\bar{t} \) resonances 22
 1.3.4 Pair production with additional jets 23

2. Monte Carlo generators 25
 2.1 Generator overview 25
 2.1.1 Hard scattering 27
 2.1.2 Parton showers 28
 2.1.3 Hadronisation and decay 32
 2.1.4 Underlying event 33
 2.2 Combining partons showers with matrix elements 35
 2.2.1 Matrix element correction for the parton shower 35
 2.2.2 Matching the parton shower with NLO matrix elements 36
 2.2.3 Merging the parton shower with tree-level matrix elements 38
 2.2.4 Comparisons .. 44
 2.3 Conclusions ... 47
3 Detection of top quarks in ATLAS 49
 3.1 The ATLAS detector .. 50
 3.1.1 Inner detector .. 50
 3.1.2 Calorimeters .. 53
 3.1.3 Muon spectrometer 58
 3.1.4 Trigger system .. 60
 3.2 Jet reconstruction .. 61
 3.2.1 Input to jet reconstruction 61
 3.2.2 Jet clustering algorithms 63
 3.2.3 Jet calibration 66
 3.2.4 Jet reconstruction performance 68
 3.3 The typical $t\bar{t}$ event 70
4 Production of $W + \text{jets}$, $t\bar{t}$, and $t\bar{t}H$ 73
 4.1 Momentum fractions .. 73
 4.2 Reconstruction of x_1 and x_2 75
 4.2.1 Neutrino momentum 75
 4.2.2 Jets and acceptance 75
 4.2.3 Jet multiplicity 78
 4.2.4 Hadronic W^{\pm} boson events 79
 4.3 Conclusions .. 80
5 Cross section at $\sqrt{s} = 14$ TeV 81
 5.1 Event topology ... 82
 5.2 Object definitions ... 84
 5.3 Event selection .. 85
 5.3.1 Trigger ... 85
 5.3.2 Preselection ... 85
 5.3.3 Selection efficiencies 86
 5.4 Top reconstruction .. 87
 5.4.1 Hadronic top quark mass 87
 5.5 Cross section determination 91
 5.6 Statistical and systematic uncertainties 92
 5.6.1 Luminosity ... 92
 5.6.2 Parton density functions 93
 5.6.3 Lepton identification and trigger efficiencies 94
 5.6.4 Initial and final state radiation 94
 5.6.5 Fit uncertainties 95
 5.6.6 Jet energy scale 95
 5.6.7 Amount of background 97
 5.7 Results and conclusions 97
6 Top quark pairs with additional jets

- **6.1 Event selection** 99
 - 6.1.1 QCD multi-jet background 99
 - 6.1.2 Including *b*-tagging 101

- **6.2 Jet multiplicity** 104
 - 6.2.1 Jet spectrum 105
 - 6.2.2 Fast versus full simulation 107
 - 6.2.3 Event generator comparison 108

- **6.3 *t*¯*t* cross section measurement** 109
 - 6.3.1 Event selection 109
 - 6.3.2 Mass reconstruction 109

- **6.4 Conclusions and discussion** 112

7 *W*± and *Z* boson production

- **7.1 Comparison** 115
- **7.2 Cross sections** 116
- **7.3 *W*± and *Z* boson spectra** 118
- **7.4 Jet spectra** 120
- **7.5 Ratio of *W* + jets and *Z* + jets events** 123
- **7.6 Underlying event** 125
- **7.7 Background from *W* + jets in *t*¯*t* event selection** 128
- **7.8 Conclusions & Discussion** 131

8 Outlook

A List of MC generators and samples

- **A.1 Monte Carlo generators** 137
- **A.2 Samples for √*s* = 14 TeV** 137
- **A.3 Samples for √*s* = 10 TeV** 140

B Generator comparison

- **B.1 MC@NLO, ALPGEN, and ACERMC** 141
- **B.2 ACERMC/Pythia: ISR and FSR variation** 143

References

Summary

Samenvatting

Acknowledgements