Asymptotics of quantum spin networks
van der Veen, R.I.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 7
 1.1 Background 7
 1.2 Main results 10
 1.3 Brief history of the conjecture 11
 1.4 Approach 12
 1.5 Overview of the thesis 14
 1.6 Generalizations 15

2 Proof of the volume conjecture for Whitehead Chains 17
 2.1 Introduction 17
 2.2 Proof of the main theorem 19
 2.3 Proof of the lemmas 21

3 The volume conjecture for augmented knotted trivalent graphs 27
 3.1 Introduction 27
 3.2 Knotted Trivalent Graphs 32
 3.3 The colored Jones invariant of a KTG 36
 3.4 The geometry of the complement of an augmented KTG 43
 3.5 Conclusion 51

4 Asymptotics of classical spin networks 53
 4.1 Introduction 53
 4.2 Existence of asymptotics 56
 4.3 Asymptotics of 6j-symbols 59
 4.4 A generating function for spin network evaluations 62
 4.5 Plan of the paper 63
 4.6 Evaluation of spin networks 64
 4.7 G-functions and existence of asymptotic expansions 68
 4.8 Computation of asymptotic expansions using Borel transform 69
 4.9 Asymptotics of the 6j-symbol 71
 4.10 Computation of asymptotic expansions using the WZ method 79
 4.11 Chromatic evaluation of spin networks 81
 4.12 Challenges and future directions 84

5 Asymptotics of quantum spin networks at a fixed root of unity 87
 5.1 Introduction 87
 5.2 Evaluation of quantum spin networks 92
 5.3 Proof of Theorems 5.3, 5.4, 5.5 and 5.6 99
5.4 Examples ... 104
5.5 Open problems 108

6 A cabling formula for the colored Jones polynomial 109
6.1 Introduction 109
6.2 Proof of the cabling formula 111
6.3 Application to the volume conjecture 118

7 Samenvatting 121
7.1 Kristallen 122
7.2 Roeren 123
7.3 Tekenen 125
7.4 Kwantumrekenen 126
7.5 Asymptotiek van kwantum-spin-netwerken 127