Asymptotics of quantum spin networks

van der Veen, R.I.

Citation for published version (APA):
Chapter 6

A cabling formula for the colored Jones polynomial

6.1 Introduction

In this note we study how the unnormalized colored Jones polynomial or quantum sl_2 invariant of a link changes under the operation of cabling. We work with a banded link or ribbon link L so that every component is an embedded annulus. Given a diagram D of a banded link inside an annulus we can construct a satellite of L by embedding D into a component L_i of L. Given a diagram D of a banded link inside an annulus we can construct a satellite of L by embedding D into a component L_i of L. The (r,s)-cabling operation is the special case where we take D to be the closure of the (r,s)-torus braid $B_r^s = (\sigma_1 \cdots \sigma_{s-1})^r$, where $r \in \mathbb{Z}, s \in \mathbb{N}$. To turn B_r^s into a banded tangle we use the blackboard framing and add a positive curl to every overpassing arc, see figure 6.1 below. The banded link obtained by (r,s)-cabling the component L_i of a banded link L will be denoted by $L_{r,s}^i$, we will also call it the $(i;r,s)$-cabling of L.

In order to state our cabling formula we need to introduce the following generalizations of the trinomial (not multinomial) coefficients defined in [And]. For a vector $N = (N_0, \ldots, N_{g-1})$ define $(g)_N$ to be the coefficient of x^w in the expansion of the product $\prod_{k=0}^{g-1} (x^{N_k} - 1 + x^{N_k-1} + \cdots + x^{N_k - g+1})$.

Theorem 6.1. Let $g = \gcd(r,s)$, $p = s/g$ and $N = (N_0, \cdots, N_{g-1})$. The unnormalized colored Jones polynomial of the zero framed $(i;r,s)$-cabling of a banded link L with c components can be expressed as follows:

$$J_{M_1, \ldots, M_{i-1}, N, \ldots, M_c}(L_{r,s}^i)(q) = \prod_{j=1}^{\frac{g}{r}} q^{\frac{N_j - 1}{r}} \sum_{w=0}^{\frac{N_j - 1}{2}} \left(\frac{q}{w}\right) q^{\frac{(g+1)}{r}} J_{M_1, \ldots, M_{i-1}, 2wp+1, \ldots, M_c}(L)(q)$$

In the statement of the theorem we have used the notation $|N| = N_0 + \cdots + N_{g-1}$ and the convention that $J_{M_1, \ldots, M_{i-1}, -j, \ldots, M_c}(L)(q) = -J_{M_1, \ldots, M_{i-1}, j, \ldots, M_c}(L)(q)$. In the case where $g = 1$ and L is the unknot the above cabling formula agrees with Morton’s formula for the (r,s)-torus knot [Mo], where his variables are...
related to ours as $s^2 = q, m = r, p = s$. The case of a $(r, 2)$-cabling is also known [Zh]. In all other cases our formula seems to be new.

Our main motivation for proving such a formula is to verify the volume conjecture [Ka2], [MM] in the cases where cabling is involved. The volume conjecture states that the normalized colored Jones polynomial $J'(L)$ of a link L determines the simplicial volume of the link complement as follows:

$$\lim_{N \to \infty} \frac{2\pi}{N} |J'_{N,N,...,N}(L)(e^{2\pi i N})| = \text{Vol}(S^3 - L)$$

As a corollary to our cabling formula we will prove the volume conjecture for all knots and links whose complement has zero simplicial volume in the following sense. We give a polynomial upper bound for the growth rate. The full volume conjecture would also include a lower bound. We can apply the cabling formula to this class of knots because it is shown in [Go] that all such links can be obtained from the unknot by repeated cabling and connected sum. Using the cabling formula we can therefore in principle write down the colored Jones polynomial of any such link.

Corollary 6.1. For all links L of volume zero, $J_N(L)(e^{2\pi i N}) = O(N^c)$ as $N \to \infty$ for some c depending on L.

So far the only zero volume and links for which the volume conjecture has been proven are the torus knots [KT] and the $(2, s)$-torus links [Zh], [Hi2]. The cabling formula of Theorem 6.1 makes it possible to conduct a detailed study.
of cabled knots and iterated cabling. In the context of the volume conjecture some natural questions would be the following:

Question 6.1. Is the volume conjecture stable under cabling?

Since cabling does not contribute to the simplicial volume this would mean that the existing exponential growth is unchanged under cabling.

Question 6.2. What is the exact asymptotic expansion for a zero volume link?

In [KT] and [DK] explicit asymptotic expansions are given in the case torus knots at the N-th root of unity. Away from the root of unity the asymptotics of torus knots has also been studied in the context of the generalized volume conjecture [MC]. It would be especially interesting to see whether the polynomial growth related to the roots of the Alexander polynomial predicted and studied in [Mh] persists.

Question 6.3. How is the colored Jones polynomial of a zero volume link related to q-series identities?

In the case of torus knots and and some special torus links K. Hikami has shown many interesting relations between colored Jones polynomials, modular forms and q-series [Hi1], [Hi2].

Question 6.4. What is the behavior of the non-commutative A-polynomial of a knot under cabling?

It is known [GaLe] that the colored Jones polynomial satisfies a linear recursion relation. This relation can be encoded in a two variable polynomial with q-coefficients called the non-commutative A-polynomial and it is conjectured [Ga0] to be related to the character variety of the knot group. The knot group behaves well under cabling and according to our cabling formula so does the colored Jones polynomial. It would be interesting to see how these two relate.

An investigation of these questions will be postponed to a subsequent publication.

Acknowledgment I would like to thank the organizers of the International Conference on Quantum topology 2007 in Hanoi for providing the atmosphere that got this paper started and Norbert A’Campo, Stavros Garoufalidis, Thang Le and Hitoshi Murakami for stimulating conversations.

6.2 Proof of the cabling formula

Let us fix a banded link L with c components L_1, \ldots, L_c. Choosing a component L_i of L and opening it up we can write L as the closure of a banded $(1,1)$-tangle T_i. Define $T_{i,a}$ to be the banded (s,s)-tangle obtained from T_i by replacing the opened component L_i of T_i by s parallel bands. In terms of these tangles the $(i;r,s)$-cabling of L is equal to the closure of the composition $T_{i,a} \circ B_r^*$, see also figure 6.1.
Note that the link $L_{r,s}^r$ has $c + g - 1$ components, where $g = \gcd(r, s)$, since the component L_i of L is replaced by the g-component torus link that is the closure of $B_{r,s}^r$. If we number the strands of the braid $B_{r,s}^r$ starting at 0 then two strands are in the same component of the closure if and only if their numbers are congruent modulo g. Therefore each component of the closed braid consists of $p = s/g$ strands. Let us suppose that our link $L_{r,s}^r$ is colored by the integers $(M_1, \ldots, M_{c-1}, N_1, \ldots, M_j)$, where the vector $N = (N_0, \ldots, N_{j-1})$ represents the new colors used to color the components of the torus link that replaces the component L_i.

We denote the the N-dimensional irreducible representation of quantum sl_2 by V_N. Using the above coloring, the torus braid corresponds to a morphism from $V = \bigotimes_{k=0}^{c-1} V_{N_k}$ to itself. In terms of these morphisms we can now state that the unnormalized $(M_1, \ldots, M_{c-1}, N_1, \ldots, M_j)$-colored Jones polynomial of the (r, s)-cabling of L (abbreviated by J) is the following quantum trace:

$$J = J_{M_1, \ldots, M_{c-1}, N_1, \ldots, M_j}(L_{r,s}^r) = \text{Tr}(B_{r,s}^r \circ T_{c,s}, V) \quad (6.1)$$

The first step in calculating this trace is to expand it using the isotypical decomposition of the tensor product as quantum sl_2 representations:

$$V = \bigotimes_{k=0}^{c-1} V_{N_k} \cong \bigoplus_{j=1}^{|N|+1} \text{Hom}(V_j, V) \otimes V_j \quad (6.2)$$

The range of the summation is calculated by the Clebsch-Gordan rule [Pr]. The isomorphism maps $(\alpha_j \otimes v)$ on the right to $\alpha_j(v)$ and $B_{r,s}^r \circ T_{c,s}$ acts on $\text{Hom}(V_j, V)$ only, while quantum sl_2 acts on the V_j only. We can therefore expand the quantum trace in (6.1) as follows:

$$J = \text{Tr}_q(B_{r,s}^r \circ T_{c,s}, V) = \sum_j \text{Tr}(B_{r,s}^r \circ T_{c,s}, \text{Hom}(V_j, V)) / \text{Tr}_q(\text{Id}_V) \quad (6.3)$$

We know that $\text{Tr}_q(\text{Id}_V) = [j] = (q^{1/2} - q^{-1/2})/(q^{1/2} - q^{-1/2})$. To calculate the other traces we study how $B_{r,s}^r \circ T_{c,s}$ acts on an element $\alpha \in \text{Hom}(V_j, V)$. The action is by composition so first we look at $T_{c,s} \circ \alpha$, the action of $T_{c,s}$. According to the graphical calculus [Tu] the colored tangle $T_{c,s}$ represents the same map as the $(1,1)$-tangle T_1 colored with V_j. Furthermore we can depict α as a coupon connecting the top of a vertical strand colored V_j to the lower end of T_1 (this end is colored V_j), see figure 6.2.

Now we can slide the coupon α up along the $(1,1)$-tangle T_1. We obtain α on top of T_1, where T_1 is now colored with V_j. Since V_j is irreducible, the operator represented by T_1 is multiplication by a scalar. By closing T_1 one sees that this scalar is exactly $|j|^{-1} J_{M_1, \ldots, M_{c-1}, j}(L)$. We conclude that $T_{c,s} \circ \alpha = |j|^{-1} J_{M_1, \ldots, M_{c-1}, j}(L) \alpha$.

The above argument shows that $B_{r,s}^r \circ T_{c,s} \circ \alpha = |j|^{-1} J_{M_1, \ldots, M_{c-1}, j}(L) B_{r,s}^r \circ \alpha$. Therefore equation (6.3) becomes:

$$J = \sum_{j=1}^{|N|+1} \text{Tr}(B_{r,s}^r, \text{Hom}(V_j, V)) J_{M_1, \ldots, M_{c-1}, j}(L) \quad (6.4)$$

Note that an equation such as (6.4) remains valid when one replaces $B_{r,s}^r$ by any braid B. Such a satellite formula also appears in [MS].
We now concentrate on calculating the trace $\text{Tr}(B_r^s, \text{Hom}(V_j, V))$. Note that $(B_r^s)^r = (\sigma_1 \cdots \sigma_{s-1})^r$ is a central element of the braid group. The element $C = (\sigma_1 \cdots \sigma_{s-1})^r$ can also be thought of as a curl in s parallel strands (hence the extra curls in the definition of B_r^s), so it acts on α as $C \circ \alpha = q^{r^2} - q^{-1} \alpha$. If we set $D = q^{r^2} - q^{-1} B_r^s$, then D^r acts as the identity on $\text{Hom}(V_j, V)$. An argument by Jones and Rosso [JR] shows that its trace does not depend on q. For the record we express the trace we were looking for in terms of D:

$$\text{Tr}(B_r^s, \text{Hom}(V_j, V)) = q^{r^2} - q^{-1} \text{Tr}(D, \text{Hom}(V_j, V))$$

(6.5)

Since the trace of D does not depend on q we can calculate it at $q = 1$. In this case $B_r^s = D$ equals the permutation $(\sigma_1 \cdots \sigma_{s-1})^r$ and the representation V can be viewed as an $SL(2)$ representation. By collecting common factors in the tensor product we see that $V \cong \bigotimes_{k=0}^{g-1} V \otimes_{p}^{N_k}$, where $p = s/g$. Note that our permutation D acts on V by permuting the factors inside each tensor power. More precisely $D = c_{g-1} \cdots c_0$ where the c_i are disjoint p-cycles and c_k permutes the factors of $V \otimes_{p}^{N_k}$. We can therefore interpret D as an element of the Cartesian product $S_g \times GL(V_{N_0})$.

One can view each of the tensor powers $V \otimes_{p}^{N_k}$ as a $S_g \times GL(V_{N_k})$ representation, where S_g acts by permuting the tensor factors and $GL(V_{N_k})$ acts diagonally. By Schur-Weyl duality [Pr] this space allows a simultaneous decomposition into irreducibles:

$$V \otimes_{p}^{N_0} \cong \bigoplus_{\lambda \vdash p} E_{\lambda_0} \otimes W_{\lambda_0}$$

Here E_{λ_0} is an irreducible S_g representation and W_{λ_0} is an irreducible $GL(V_{N_0})$ representation and the sum is over all partitions of length no more than N_0.

Taking the tensor product over all such powers and rearranging the factors gives the following decomposition of V as an $S_g \times GL(V_{N_0}) \times \cdots \times GL(V_{N_{g-1}})$ representation:

$$V \cong \bigoplus_{\lambda_0 \vdash \lambda_1 \vdash \cdots \vdash \lambda_{g-1}} E_{\lambda_0} \otimes E_{\lambda_1} \otimes \cdots \otimes E_{\lambda_{g-1}} \otimes W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}$$
The $GL(V_{N_0}) \times \cdots \times GL(V_{N_{g-1}})$ representation $W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}$ is in a natural way also an $SL(2)$-representation. We can therefore decompose it into irreducible $SL(2)$-representation as follows:

$$W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}} \cong \bigoplus_j \text{Hom}(V_j, W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}) \otimes V_j$$

Hence we find the following decomposition of V:

$$V \cong \bigoplus_j \left(\bigoplus_{\lambda_0 \leq \cdots \leq \lambda_{g-1}} E_{\lambda_0} \otimes \cdots \otimes E_{\lambda_{g-1}} \otimes \text{Hom}(V_j, W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}) \right) \otimes V_j$$

Note that we only allow λ_k to have length $\leq N_k$. Comparing this decomposition with the isotypical decomposition (6.2) for $q = 1$ we see that:

$$\text{Hom}(V_j, V) \cong \bigoplus_{\lambda_0 \leq \cdots \leq \lambda_{g-1}} E_{\lambda_0} \otimes \cdots \otimes E_{\lambda_{g-1}} \otimes \text{Hom}(V_j, W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}) \quad (6.6)$$

The action of D on this space is only on the E_{λ_k}. As above we write $D = c_0 \cdots c_{g-1}$ as a product of disjoint p-cycles and we note that the cycle c_k acts in E_{λ_k}. If we define $R_{\mu, \lambda_0 \leq \cdots \leq \lambda_{g-1}} = \dim(\text{Hom}(V_j, W_{\lambda_0} \otimes \cdots \otimes W_{\lambda_{g-1}}))$ and denote all c_k by c we have the following expression for the trace:

$$\text{Tr}(D, \text{Hom}(V_j, V)) = \sum_{\lambda_0 \leq \cdots \leq \lambda_{g-1}} \chi_{\lambda_0}(c) \cdots \chi_{\lambda_{g-1}}(c) R_{\mu, \lambda_0 \leq \cdots \leq \lambda_{g-1}} \quad (6.7)$$

Here χ_{λ} is the character of the symmetric group S_p. To calculate these traces we note that the dimensions $R_{\mu, \lambda_0 \leq \cdots \leq \lambda_{g-1}}$ are encoded in the following product expansion of Schur functions:

$$\prod_{k=0}^{g-1} s_{\lambda_k}(t^{N_k-1}, t^{N_k-3}, \ldots, t^{-N_k+1}) = \sum_{\mu \vdash N_{g-1}} R_{\mu, \lambda_0 \leq \cdots \leq \lambda_{g-1}} s_{\mu}(t^{-1}) \quad (6.8)$$

To see why this is true we consider the simple case where $g = 1$. Let (ρ_N, V_N) be the N dimensional irreducible $SL(2)$ representation, let (ϕ, W_λ) be an irreducible $GL(V_{N_0})$ representation indexed by λ and let (ψ_{μ}, V_μ) be an irreducible $SL(2)$ representation indexed by a two part partition μ. We will prove that we have the following equation, leaving the case for general g to the reader.

$$s_{\lambda}(t^{N-1}, t^{N-3}, \ldots, t^{N_1+1}) = \sum_{\mu \vdash N} \dim(\text{Hom}(\phi, \psi_{\mu})) s_{\mu}(t^{-1})$$

Proof. (of the claim) We know that $s_{\lambda}(t_1, \ldots, t_N) = \text{Tr}_{\phi}(\text{diag}(t_1, \ldots, t_N))$. That is the Schur function is the character of the irreducible $GL(V)$ representation on the diagonal elements. Note that $\text{diag}(t^{N-1}, t^{N-3}, \ldots, t^{N_1+1}) = \rho_N(\text{diag}(t^{-1}))$. Therefore we can write the left hand side of the equation
as \(s_{\lambda}(t^{N-1}, t^{N-3}, \ldots, t^{-N+1}) = \text{Tr}(\phi_{\lambda} \circ \rho_{N})\text{diag}(t, t^{-1}) \). Now decomposing the \(\text{SL}(2) \) representation \(\phi_{\lambda} \circ \rho_{N} \) into irreducibles we get:

\[
\phi_{\lambda} \circ \rho_{N} = \bigoplus_{\mu} \text{Hom}(\psi_{\mu}, \phi_{\lambda}) \otimes \psi_{\mu}
\]

In this decomposition we get

\[
\text{Tr}(\phi_{\lambda} \circ \rho_{N})\text{diag}(t, t^{-1}) = \sum_{\mu} \dim(\text{Hom}(\psi_{\mu}, \phi_{\lambda}))\text{Tr}\psi_{\mu}\text{diag}(t, t^{-1})
\]

Since \(\text{Tr}\psi_{\mu}\text{diag}(t, t^{-1}) = s_{\mu}(t, t^{-1}) \) the proof is finished.

The above condition on the direct sum in (6.6) that the length of \(\lambda \) is no more than \(N \) is now incorporated into the Schur functions, because an \(N \)-variable Schur function \(s_{\lambda} \) is nonzero only if \(\lambda \) has no more than \(N \) parts.

As a quick check that the above formula (6.8) includes all the dimensions \(R \), note that \(\lambda \vdash p \) and so the highest degree term of \(s_{\lambda}(t^{N-1}, t^{N-3}, \ldots, t^{-N+1}) \) is \(t^{pN} \), hence \(\mu \vdash p[N] - s \) because the highest degree term of \(s_{\mu}(t, t^{-1}) \) is \(t^{\mu} \). Note also that only length-two partitions \(\mu \) contribute to the sum because the Schur functions \(s_{\mu} \) have only two variables. In case \(\mu = (\mu_{1}, \mu_{2}) \) we have

\[
s_{\mu}(x, y) = x^{\mu_{1}+1}y^{\mu_{2}+1}x^{\mu_{2}+1}y^{\mu_{1}+1}
\]

and \(s_{\mu}(t, t^{-1}) = t^{\mu_{1}+1}t^{-\mu_{2}-1}t^{-\mu_{2}-1}t^{\mu_{1}+1} \). The range of the summation in (6.8) therefore agrees exactly with the range of \(j \) in the decomposition of the tensor product (6.2). From now on we will parameterize this range by two part partitions \(\mu \vdash p[N] - s \) and set \(V_{\mu} = V_{j} \), where \(j = \mu_{1} - \mu_{2} + 1 \).

Using the product of Schur functions in (6.8) as a generating function for the dimensions \(R \) we can compute \(\text{Tr}(D, \text{Hom}(V_{j}, V)) \) simultaneously for all \(\mu \). First we sum the right hand side and the left hand side of equation (6.8) with the characters as in the sum in (6.7):

\[
\sum_{\mu \vdash [N]-s} \left(\sum_{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1} \vdash\vdash p \mu} \chi_{\lambda_{0}}(c) \cdots \chi_{\lambda_{s-1}}(c) R_{\mu, \lambda_{0}, \ldots, \lambda_{s-1}} \right) s_{\mu}(t, t^{-1}) = \sum_{\mu \vdash [N]-s} \left(\sum_{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1} \vdash\vdash p \mu} \chi_{\lambda_{0}}(c) \cdots \chi_{\lambda_{s-1}}(c) \prod_{k=0}^{s-1} s_{\lambda_{k}}(t^{N_{k-1}}, t^{N_{k-3}}, \ldots, t^{-N_{k+1}}) \right)
\]

\[
= \prod_{k=0}^{s-1} \sum_{\lambda_{k} \vdash [N]-s} \chi_{\lambda_{k}}(c) s_{\lambda_{k}}(t^{N_{k-1}}, t^{N_{k-3}}, \ldots, t^{-N_{k+1}})
\]

\[
= \prod_{k=0}^{s-1} p_{\mu}(t^{N_{k-1}}, t^{N_{k-3}}, \ldots, t^{-N_{k+1}})
\]

In the last line we used the expansion of the power sum function \(p_{\mu} \) in terms of Schur functions [Mac] p.114. We can use the notion of plethysm [Mac] p.138 to write the power sums in terms of the complete symmetric functions \(h \) as follows:

\[
p_{\mu}(t^{N_{k-1}}, t^{N_{k-3}}, \ldots, t^{-N_{k+1}}) = (p_{\mu} \circ h_{N_{k}-1})(t, t^{-1}) = h_{N_{k}-1}(t^{\mu}, t^{-\mu})
\]

115
As with partitions we define \(h_{N-1} = \prod_{k=0}^{g-1} h_{N_{k-1}} \) so that we can write the above product (6.10) as:

\[
\prod_{k=0}^{g-1} P_k(t^{N_{k-1}}, t^{N_{k-3}}, \ldots, t^{N_{k+1}}) = h_{N-1}(t^p, t^{-p})
\]

(6.11)

Comparing equations (6.9) and (6.11) we see that to compute the traces in (6.7) we need to express \(h_{N-1}(t^p, t^{-p}) \) in terms of the \(s_\mu(t, t^{-1}) \). The coefficients in this expansion will be our traces.

First we consider the case where \(p = 1 \). Since we have \(s = g \) there are \(|(\lfloor N/2 \rfloor - g)/2 + 1 \) two part partitions \(\mu \vdash (\lfloor N/2 \rfloor - g) \), that we will number by the half integers \(w = (\mu_1 - \mu_2)/2 \). Since \(h_{N-1}(t, t^{-1}) \) is a product of geometric series we can use the notation defined in the introduction to write: \(h_{N-1}(t, t^{-1}) = \sum_{w=0}^{\lfloor (N-2)/2 \rfloor} \left(\left(\frac{g}{w} \right)_N - \left(\frac{g}{w+1} \right)_N \right) \frac{t^{2w+1} - t^{2w-1}}{t - t^{-1}} \)

(6.12)

The above equation settles the case \(p = 1 \) since the Schur functions are exactly the geometric series in the two variable case. We will come back to the \(p = 1 \) case after we have found the coefficients for \(p > 1 \). We will then show that these cases can be unified into a single cabling formula for the colored Jones polynomial.

From now on let’s assume that \(p \geq 2 \). We will carry out the expansion of \(h_{N-1}(t^p, t^{-p}) \) into two variable Schur functions in a little more generality by setting \(x_1 = t \) and \(x_2 = t^{-1} \). As a first step consider the following fundamental identity [Mac] p.62 relating the complete symmetric functions to the Schur functions:

\[
\sum_\lambda h_\lambda(x)m_\lambda(y) = \prod_{\mu} (1 - x_\mu y_\mu)^{-1} = \sum_\lambda s_\lambda(x)s_\lambda(y)
\]

(6.13)

Here \(m_\lambda(y) \) is the monomial symmetric function and \(x = (x_1, x_2, \ldots) \) and the sums range over all partitions \(\lambda \). The first part of the identity (6.13) implies that \(h_{N-1}(x_1^p, x_2^p) \) is the coefficient of \(y^\mu(\mu + 1) \ldots (\mu + p - 1) \) \(s_\mu \) in the expansion of the product \(\prod_{\lambda=1}^{p-1}(1-x_\mu y_\mu)^{-1} \) in the expansion of the product \(\prod_{\lambda=1}^{p-1}(1-x_\mu y_\mu)^{-1} \) \(s_\mu \) in the expansion of the product \(\prod_{\lambda=1}^{p-1}(1-x_\mu y_\mu)^{-1} \). Factoring we can also write this product as \(\prod_{\lambda=1}^{p-1}(1-x_\mu \omega^\mu y_\mu)^{-1} \) \(s_\mu \) in the expansion of the product \(\prod_{\lambda=1}^{p-1}(1-x_\mu \omega^\mu y_\mu)^{-1} \). Using the second half of the identity (6.13) we can expand the same product into two variable Schur functions:

\[
\prod_{\lambda=1}^{p-1}(1-x_\mu \omega^\mu y_\mu)^{-1} = \sum_\mu s_\mu(y_\mu) \omega^\mu y_{\mu+1} \]

(6.13)

Taking the coefficient of \(y^\mu(\mu + 1) \ldots (\mu + p - 1) \) on the left gives \(h_{N-1}(x_1^p, x_2^p) \) back, while the coefficient of \(y^\mu(\mu + 1) \ldots (\mu + p - 1) \) on the right hand side is \(\sum_\mu K_\mu s_\mu(x_1, x_2) \), where \(K_\mu \) is the coefficient of \(y^\mu(\mu + 1) \ldots (\mu + p - 1) \) in \(s_\mu(y_\mu) \omega^\mu y_{\mu+1} \). It follows that the trace we wanted to calculate is equal to this coefficient: \(\text{Tr}(D, \text{Hom}(V_\mu, V)) = K_\mu \).

We proceed with the calculation of \(K_\mu \). By [Mac] p.72 we can expand the Schur function \(s_\mu(y_\mu, \omega^\mu y_{\mu+1}, \ldots, \omega^{\mu-1} y_{\mu+1}) \) in terms of skew Schur functions mak-
s_\mu(y_0, \omega y_0, \ldots, \omega y_{p-1}) = \sum_{j=0}^{g-1} y_j^{(j)} y_j^{(j-1)} s_{\mu(j)/\mu(j-1)}(1, \omega, \ldots, \omega^{p-1})

The sum ranges over all sequences of partitions 0 = \mu^{(0)} \subset \mu^{(1)} \subset \mu^{(g)} = \mu.

Only the sequences of partitions satisfying |\mu^{(j)} - \mu^{(j-1)}| = p(N_j - 1) contribute to the coefficient of \mu^{(N-1)} in this sum. The contribution of such a sequence is \prod_{j=0}^{g-1} y_j^{\left|\nu(j) - \nu(j-1)\right|} y_j^{\nu(j)/\nu(j-1)}(1, \omega, \ldots, \omega^{p-1}). In the cases we are interested in \mu has length 2 and it follows from [Mac] p.91 that this contribution is zero unless \nu^{(j)} can be obtained from \nu^{(j-1)} by attaching N_j - 1 border strips of length p. A set theoretical difference between two nested partitions is called a border strip of length p if it is connected, does not contain any 2 \times 2 squares and has p elements. If this is the case for all j, then the contribution is \sigma_p(\mu) = (-1)^r, where 0 \leq r_2 < p is the residue of r_2 modulo p.

The above argument shows that \nu = \sigma_p(\mu)[K_\mu] and that |K_\mu| is equal to the number of sequences of partitions 0 = \mu^{(0)} \subset \mu^{(1)} \subset \mu^{(g)} = \mu satisfying the condition that \nu^{(j)} is obtained from \nu^{(j-1)} by attaching N_j - 1 border strips of length p.

To count the number of such sequences we first look at all ways of constructing two part partitions by attaching length p-border strips, starting with the empty partition. One notices that the lower leftmost corner of a new border strip can be attached at exactly two places: either the end of the first row or the end of the second row. It follows that we can list all possibilities in a Pascal-like triangle, see figure 6.2.

Figure 6.3: The Pascal-like triangle of all two part partitions that can be glued from 5 or less border strips of length p = 4.

The k-th row of our Pascal triangle contains k + 1 partitions that we index by the half integers -\frac{k}{2}, -\frac{k}{2} + 1, \ldots, \frac{k}{2}. The triangle is ordered such that if \mu has index w(\mu) = w then \mu_1 - \mu_2 + 1 = \text{sgn}(w)(2wp + 1) and \text{sgn}(w) = \sigma_p(\mu), provided that we agree that \text{sgn}(0) = 1.

Interpreting |K_\mu| in terms of the Pascal triangle we see that |K_\mu| is equal to the number of ways to move from the (empty) top of the triangle to \mu at p|N| - s in g steps of length N_k - 1, for k = 0, \ldots, g - 1. A step of length A can go in A + 1
directions that are conveniently indexed by $\mathbb{Z}/2\mathbb{Z}$ and $\frac{1}{2}$. The sum of these indices must be the index of μ, that is w. Therefore the number of ways is exactly the coefficient of x^w in the product $\prod_{i=0}^{n-1}(x - \frac{\mu_i}{\mu})$. Using the notation defined in the introduction we see that $J_{\mu} = \binom{\frac{\mu}{2}}{N}$ and so $K_n = \text{sgn}(\mu)\binom{\frac{\mu}{2}}{N}$.

We can now summarize the calculation of $J = J_{\mu_1, \ldots, \mu_n}$ as follows. First we expressed it in equation (6.4) as a sum over the colors i of both terms in $\text{sgn}(\mu_1)\ldots\text{sgn}(\mu_n)$ of the uncabled link. In (6.5) the dependence on q was extracted and finally the rest of the trace was shown to be given by the coefficients in equation (6.12) for $p = 1$ and by K_n for $p \geq 2$. Along the way we changed the sum over colors into a sum over two part partitions μ.

Remarkably this formula is also valid for $p = 1$. In this case the non-negative w run through all partitions and both w and $-(w+1)$ contribute to the same term $J_{\mu_1, \ldots, \mu_n, |w|} (L)$, thus producing the coefficients found in (6.12).

Finally the convention J_{μ_1, \ldots, μ_n} allows us to incorporate the sign into the colored Jones polynomial by saying that a multi-sequence is moderate if there exist $C, m > 0$ such that

$$\forall N : \max\deg(P_N), \min\deg(P_N), |a_j| < C N^m$$

118

6.3 Application to the volume conjecture

As an application of the cabling formula we just proved we will show that the volume conjecture holds true for all zero volume knots and links (Corollary 6.1) in the sense that we have an upperbound on the growth rate that is polynomial in N.

Theorem 6.2. For all links L of volume zero, $J_N(L)(e^{it}) = O(N^c)$ as $N \to \infty$ for some c depending on L.

Proof. The zero volume links are related to cabling by the fact that all links of zero simplicial volume are obtained from the unknot by repeated cabling and connected sum [Go].

In the volume conjecture the usual normalization of the colored Jones polynomial for knots is to divide by the value of the unknot. However, if a link has s split components then the unnormalized Jones has at least an s fold zero at the N-th root of unity [V2]. We therefore choose to normalize it by dividing by $|N|^s$. For convenience we work with $A = q^{1/4}$ instead of q so that for the volume conjecture we need to evaluate at $A = e^{it/12N}$.

The unnormalized colored Jones polynomial of a link with c components is a multi-sequence of Laurent polynomials in A of the form $P_N(A) = \sum_j P_{N, j} A^j$, where $N = (N_1, \ldots, N_c)$. We say that a multi-sequence is moderate if there exist $C, m > 0$ such that

$$\forall N : \max\deg(P_N), \min\deg(P_N), |a_j| < C |N|^m$$
It is clear that the set of moderate sequences is closed under products and differentiation with respect to A.

To prove the volume conjecture for all zero volume links we first show that their unnormalized colored Jones polynomials are moderate. Since such links are obtained from the unknot by repeated cabling and connected sum, we first need to show that $[N]$ is moderate (trivial). To deal with connected sum, note that $J_N(K \# L) = \frac{J_N(K)J_N(L)}{N_c}$, where N_c is the color of the component on which we apply the connected sum. Here we already know that the product in the numerator is divisible by N_c because both factors are. Hence we only need to check that if $[N^cP]$ is moderate, then so is P. This follows from the fact that $[N]$ is a finite geometric series. Finally we need to show that the set of moderate multi-sequences is closed under taking products and under an operation that generalizes cabling of links that we now define. Given two multi-sequences $P_{M1}(A)$ and $Q_{N,w}(A)$ define a new multi-sequence $R_{M1,...,Mi-1,N,...,Mc}(A)$ by

\[
R_{M1,...,Mi-1,N,...,Mc}(A) = \sum_{|w| \leq (|N|-g)/2} Q_{N,2c}(A)P_{M1,...,Mi-1,[2c+1],...Mc}(A)
\]

The triangle inequality shows that that if P and Q are moderate then so is R. The cabling formula applied to the colored Jones polynomial J of any link is an example of the above defined operation where $P = J$ and $Q_{N,w}(A)$ is a multi-sequence that does not depend on the link and is readily read off from the cabling formula or rather the version at the end of the last section. It is not hard to see that this Q is indeed moderate.

Now that we know that the unnormalized colored Jones polynomial of a zero volume knot $J_N(A)$ is moderate we conclude the proof of corollary 1 as follows. To evaluate the normalized Jones polynomial we will use ‘l Hospital’s rule after writing it as

\[
J_{N,...,N}(A)/|N| = \tilde{J}_{N,...,N}(A)/(A^{2N} - A^{-2N})
\]

where $\tilde{J} = (A^2 - A^{-2})^s J$ is again moderate. If we differentiate both numerator and denominator s times with respect to A and evaluate at $e^{\pi i/2}$ we get

\[
\lim_{N \to \infty} 2\pi \frac{|J_{N,...,N}(e^{\pi i/2})|}{N!} = 0
\]

A.