
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On the contribution of backward jumps to instruction sequence expressiveness

Bergstra, J.A.; Bethke, I.

Publication date
2010
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Bethke, I. (2010). On the contribution of backward jumps to instruction
sequence expressiveness. ArXiv. http://arxiv.org/abs/1005.5662

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:04 Dec 2024

https://dare.uva.nl/personal/pure/en/publications/on-the-contribution-of-backward-jumps-to-instruction-sequence-expressiveness(d6a3febe-3849-4902-b791-3e7824ff71c5).html
http://arxiv.org/abs/1005.5662

ar
X

iv
:1

00
5.

56
62

v1
 [

cs
.L

O
]

 3
1

M
ay

 2
01

0

On the contribution of backward jumps to instruction

sequence expressiveness

Jan A. Bergstra

Inge Bethke

Section Theory of Computer Science, Informatics Institute, University of Amsterdam

URL: www.science.uva.nl/~{janb,inge}

June 1, 2010

Abstract

We investigate the expressiveness of backward jumps in a framework of formalized

sequential programming called program algebra. We show that—if expressiveness is

measured in terms of the computability of partial Boolean functions—then backward

jumps are superfluous. If we, however, want to prevent explosion of the length of

programs, then backward jumps are essential.

1 Introduction

We take the view that sequential programs are in essence instruction sequences which leads to
an algebraic approach to the formal description of the semantics of programming languages
also known as program algebra. It is a framework that permits algebraic reasoning about
programs and has been investigated in various settings (see e.g. [3, 9, 10, 11, 16]). Here the
notion of program algebra refers to the concept introduced in [3] where the behaviour of a
program is taken for a thread, i.e. a form of process that is tailored to the description of the
behaviour of a deterministic sequential program under execution.

In addition to basic, test and termination instructions, program algebra considers two
sorts of unconditional jump instructions: forward and backward jumps. If only forward
jumps are permitted, then threads that perform an infinite sequence of actions are ex-
cluded. In other words, programs for which the execution goes on indefinitely cannot be
expressed. However, in a setting with backward jump instructions also every regular infi-
nite thread—i.e. every infinite, finite state process—can be described by a finite sequence of
primitive instructions.

The aim of this paper is to give an indication of the expressiveness of backward jumps,
where expressiveness is measured in terms of the Boolean partial functions that can be
computed with the aid of instruction sequences. As it will turn out every partial Boolean

1

http://arxiv.org/abs/1005.5662v1
www.science.uva.nl/~{janb,inge}

function can be computed without backward jumps. Thus, semantically we can do without
backward jumps. However, if we want to avoid an explosion of the length on instruction
sequences, then backward jumps are essential.

This paper is organized as follows. Section 2 briefly recalls the program notation PGLBbt
and its accompanying thread algebra. In Section 3 we review services and the interactions
of services with threads. Section 4 investigates the expressiveness of backward jumps.

2 Instruction sequences and regular threads

In this section, we briefly recall the program notation PGLBbt and its accompanying thread
algebra. PGLB is a notation for instruction sequences and belongs to a hierarchy of program
notations in the program algebra PGA introduced in [3] (see also [15]). PGLBbt is PGLB
with the termination instruction ! refined into two Boolean termination instructions !t, !f
(see also [5, 6, 7]). Both PGLB and PGLBbt are close to existing assembly languages and
have relative jump instructions.

Assume A is a set of constants with typical elements a, b, c, PGLBbt(A) instruction
sequences are then of the following form (a ∈ A, l ∈ N):

I ::= a | +a | −a | #l | \#l | !t | !f | I; I.

The first seven forms above are called primitive instructions. These are

1. basic instructions a which prescribe actions that are considered indivisible and exe-
cutable in finite time, and which return upon execution a Boolean reply value,

2.-3. test instructions obtained from basic instructions by prefixing them with either +
(positive test instruction) or − (negative test instruction) which control subsequent
execution via the reply of their execution,

4.-5. jump instructions #l, \#l which prescribe to jump l instructions forward and back-
ward, respectively—if possible; otherwise deadlock occurs—and generate no observable
behavior, and

6.-7. the termination instructions !t, !f which prescribe successful termination and in doing
so deliver the Boolean value t and f, respectively.

Complex instruction sequences are obtained from primitive instructions using concate-
nation: if I and J are instruction sequences, then so is

I; J

which is the instruction sequence that lists J ’s primitive instructions right after those of I.
We denote by IS(A) the set of PGLBbt(A) instruction sequences.

Thread algebra is the behavioural semantics for PGA and was introduced in e.g. [1, 3]
under the name Polarized Process Algebra.

2

In the setting of PGLBbt(A), finite threads are defined inductively by:

S+ − the termination thread with positive reply,

S− − the termination thread with negative reply,

D − inaction or deadlock, the inactive thread,

T E aD T ′ − the postconditional composition of T and T ′ for action a,

where T and T ′ are finite threads and a ∈ A.

The behaviour of the thread T E a D T ′ starts with the action a and continues as T upon
reply t to a, and as T ′ upon reply f. Note that finite threads always end in S+, S− or D.
We use action prefix a ◦ T as an abbreviation for T E aD T and take ◦ to bind strongest.

Infinite threads are obtained by guarded recursion. A guarded recursive specification is
a set of recursion equations E = {Ei = Ti | i ∈ I} where each Ti is of the form S+, S−,D or
T E aD T ′ with T, T ′ process terms with variables from {Ei | i ∈ I}. A regular thread is a
finite state thread in which infinite paths may occur. Regular threads correspond to finite
guarded recursive specifications, i.e. guarded recursive specifications with a finite number
of recursive equations. To reason about infinite threads, we assume the Approximation
Induction Principle

∧

n≥0

πn(T) = πn(T
′) ⇒ T = T ′ (AIP).

AIP identifies two threads if their approximations up to any finite depth are identical. The
approximation up to depth n of a thread is obtained by cutting it off after n performed
actions. In AIP, the approximation up to depth n is phrased in terms of the projection
operator πn which is defined by

1. π0(T) = D,

2. πn+1(S+) = S+,

3. πn+1(S−) = S−,

4. πn+1(D) = D, and

5. πn+1(T E aD T ′) = πn(T)E aD πn(T
′)

for n ∈ N. Every infinite thread T can be identified with its projective sequence (πn(T))n∈N.

Upon its execution, a basic or test instruction yields the equally named action in a post
conditional composition. Thread extraction on PGLBbt(A), notation |X | with X ∈ IS(A),
is defined by

|X | = |1, X |

where | , | in turn is defined by the equations given in Table 1. In particular, note that upon
the execution of a positive test instruction +a, the reply t to a prescribes to continue with
the next instruction and f to skip the next instruction and to continue with the instruction
thereafter; if no such instruction is available, deadlock occurs. For the execution of a negative
test instruction −a, subsequent execution is prescribed by the complementary replies.

3

|i, u1; . . . ;uk| = D if i = 0 or k < i
|i, u1; . . . ;uk| = a ◦ |i+ 1, u1; . . . ;uk| if ui = a

|i, u1; . . . ;uk| = |i+ 1, u1; . . . ;uk|E aD |i+ 2, u1; . . . ;uk| if ui = +a

|i, u1; . . . ;uk| = |i+ 2, u1; . . . ;uk|E aD |i+ 1, u1; . . . ;uk| if ui = −a

|i, u1; . . . ;uk| = |i+ l, u1; . . . ;uk| if ui = #l
|i, u1; . . . ;uk| = |i− l, u1; . . . ;uk| if ui = \#l and i > l
|i, u1; . . . ;uk| = |0, u1; . . . ;uk| if ui = \#l and i ≤ l
|i, u1; . . . ;uk| = S+ if ui = !t
|i, u1; . . . ;uk| = S− if ui = !f

Table 1: Equations for thread extraction, where a ranges over the basic instructions and
i, k, l ∈ N

If we add the rule

|i, , u1; . . . ;uk| = D if ui is the beginning of an infinite jump chain

then thread extraction on PGLBbt(A) yields regular threads. Conversely, every regular
thread corresponds to a PGLBbt(A) instruction sequence after thread extraction.

Example 2.1. We consider the PGLBbt(A) instruction sequence

X = a; +b; #2; #3; c; \#4; +d; !t; !f.

Thread extraction of X yields the regular thread

E0 = a ◦ E1

E1 = c ◦ E1 E bD (S+ E dD S−)

A picture of this thread is

E1:

E0:

〈 b 〉

�
�	

@
@R

[a]

?

〈 d 〉

�
�	

@
@R

[c]

S+

?

S−

Here [a] corresponds to action prefix and 〈a〉 to postconditional composition with a left hand

4

vector continuing the path in case of a positive reply and a right hand vector in case of a
negative reply.

This thread can also given by the projective sequence (πn(E0))n∈N where

π0(E0) = D

π1(E0) = a ◦ D
π2(E0) = a ◦ b ◦ D
π3(E0) = a ◦ (c ◦ DE bD d ◦ D)

and πn+4(E0) = a ◦ (c ◦ πn+1(E1)E bD (S+E d D S−)) where

π0(E1) = D

π1(E1) = b ◦ D

and πn+2(E1) = c ◦ πn(E1)E bD (S+E dD S−).

For basic information on thread algebra we refer to [2, 15]; more advanced matters, such
as an operational semantics for thread algebra, are discussed in [4].

3 Services

Services process certain methods which may involve a change of state, and produce reply
values. In the sequel, we let M be an arbitrary but fixed set of methods and R = {t, f, d}
be the set of reply values with d the divergent value which is neither true nor false.

A service S consists of

1. a set S of states in which the service may be,

2. an effect function eff : M× S → S that gives for each method m and state s the
resulting state after processing m,

3. a yield function yld : M× S → R that gives for each method m and state s the
resulting reply after processing m, and

4. an initial state s0 ∈ S

satisfying the condition

(†) ∃s ∈ S ∀m ∈ M (yld(m, s) = d & ∀s′ ∈ S (yld(m, s′) = d ⇒ eff (m, s′) = s)).

Given a service S = 〈S, eff , yld , s0〉 and a method m ∈ M,

5. the derived service of S after processing m, ∂
∂m

S, is defined by

∂

∂m
S = 〈S, eff , yld , eff (m, s0)〉

5

6. the reply of S after processing m, S(m), is defined by S(m) = yld(m, s0).

When a request is made to service S to process method m then

7. if S(m) 6= d, then the service processes m, produces the reply S(m), and proceeds as
∂
∂m

S, but

8. if S(m) = d, then the service rejects the request and proceeds as a service that rejects
any request to process a method.

An empty service S is a service that is unable to process any method, i.e. S(m) = d for
all m ∈ M. Given (†), we can identify all empty services and denote it δ. A set of services
is called closed if it contains the empty service and is closed under ∂

∂m
for all m ∈ M.

Example 3.1. Given the set of methods M = {set:t, set:f, get}, we consider the set of
services B = {B(x) | x ∈ R} of Boolean registers with initial values t, f and d, respectively.
Here for x ∈ R, B(x) = 〈R, eff , yld , x〉 where

eff (set:t, x) =

{

t if x = f, and

x otherwise

eff (set:f, x) =

{

f if x = t, and

x otherwise,

and eff (get, x) = x; for m ∈ M, yld(m,x) = t if x ∈ {t, f} and yld(m, d) = d. Observe
that B is closed with δ = B(d) and

∂
∂set:tB(t) = B(t), ∂

∂set:tB(f) = B(t), ∂
∂set:tB(d) = B(d),

∂
∂set:fB(t) = B(f), ∂

∂set:fB(f) = B(f), ∂
∂set:fB(d) = B(d),

and ∂
∂get

B(x) = B(x) for x ∈ R.

A service family is a set of services uniquely named by a fixed but arbitray set F of foci.
∅ denotes the empty service family, and for f ∈ F and service S, f.S denotes the singleton
service family consisting of the named service f.S. ⊕ denotes the binary composition oper-
ator which forms the union of service families under the provision that named services with
the same name collapse to the empty service with that name. For F ⊆ F , ∂F denotes the
unary encapsulation operator which removes the named services with a name in F from a
given service family. The axioms for service families are given in Table 2.

Let A = {f.m | f ∈ F , m ∈ M} ∪ {tau} where tau denotes a basic internal action
which does not have any side effects and always replies true. Then a thread may make use
of services by performing a basic action for the purpose of requesting a named service to
process a method and to return a reply value at completion of the processing of the method.
In the sequel, we combine threads with services and extend the combination with the two
operators / and ! which relate to this kind of interaction between threads and services.

6

u⊕ ∅ = u SFC1 ∂F (∅) = ∅ SFE1

u⊕ v = v ⊕ u SFC2 ∂F (f.S) = ∅ if f ∈ F SFE2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) SFC3 ∂F (f.S) = f.S if f 6∈ F SFE3

f.S⊕ f.S′ = f.δ SFC4 ∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

Table 2: Axioms for binary composition and encapsulation of service families with f ∈ F ,
F ⊆ F and services S, S′.

The thread denoted by a closed term of the form T/S is the thread that results from
processing the method of each basic action with a focus of the service family denoted by S
that the thread denoted by T performs, where the processing is done by the service in that
service family with the focus of the basic action as its name. When the method of a basic
action performed by a thread is processed by a service, the service changes in accordance
with the method concerned, and affects the thread as follows: the basic action turns into
the internal action tau and the two ways to proceed reduce to one on the basis of the reply
value produced by the service. The value denoted by a closed term of the form T !S is the
Boolean value that the thread denoted by T/S delivers at its termination, and the value d

if it does not terminate. The axioms for the use and the reply operator were first given in
[6] and are listed in Tables 3, and 4. In their original version, the axiomatizations contain
the axioms U3 and R3 concerning the use and reply of the unpolarized termination S with
service families. Since we only consider boolean termination, we have omitted these axioms.

S+/u = S+ U1

S−/u = S− U2

D/u = D U4

(tau ◦ x)/u = tau ◦ (x/u) U5

(xE f.mD y)/∂{f}(u) = (x/∂{f}(u))E f.mD (y/∂{f}(u)) U6

(xE f.mD y)/(f.S⊕ ∂{f}(u)) = tau ◦ (x/(f. ∂
∂m

S⊕ ∂{f}(u))) if S(m) = t U7

(xE f.mD y)/(f.S⊕ ∂{f}(u)) = tau ◦ (y/(f. ∂
∂m

S⊕ ∂{f}(u))) if S(m) = f U8

(xE f.mD y)/(f.S⊕ ∂{f}(u)) = D if S(m) = d U9

Table 3: Axioms for the use operator with f ∈ F , m ∈ M and service S

Example 3.2. We continue with Example 3.1 and put F = N. We let Eq(1, 2) be the

7

S+!u = t R1

S−!u = f R2

D!u = d R4

(tau ◦ x)!u = x!u R5

(xE f.mD y)!∂{f}(u) = d R6

(xE f.mD y)!(f.S⊕ ∂{f}(u)) = x!(f. ∂
∂m

S⊕ ∂{f}(u)) if S(m) = t R7

(xE f.mD y)!(f.S⊕ ∂{f}(u)) = y!(f. ∂
∂m

S⊕ ∂{f}(u)) if S(m) = f R8

(xE f.mD y)!(f.S⊕ ∂{f}(u)) = d if S(m) = d R9

Table 4: Axioms for the reply operator with f ∈ F , m ∈ M and service S

PGLBbt(A) instruction sequence

+1.get; #2;#4;+2.get; !t; !f;−2.get; \#3; \#3

which intuitively describes a finite thread that compares 2 Boolean registers and returns the
reply t if their values are not divergent and equal, f if their values are not divergent but
different, and d otherwise. Indeed, formalizing this interaction in the setting of services we
put S = 1.B(b1)⊕ 2.B(b2) and compute

|Eq(1, 2)|!S = ((S+ E 2.getD S−)E 1.getD (S− E 2.getD S+))!S

=











(S+ E 2.getD S−)!S if b1 = t,

(S− E 2.getD S+)!S if b1 = f, and

d if b1 = d.

=











t if b1 = b2 6= d,

f if d 6= b1 6= b2 6= d, and

d if b1 = d or b2 = d.

We let E(m,n) be the generic equality test for the registers bm, bn and

E(1, 2, 3) = +1.get; #2;#4;−2.get; !f; #4;+2.get; \#3; 0.set:f;E(0, 3)

the lazy equality test of 3 registers which stores an intermediate result in the auxiliary

8

register b0. Observe that |Eq(1, 2, 3)|/0.B(t)

= ((|E(0, 3)|E 2.getD S−)E 1.getD (S− E 2.getD (0.set:f ◦ |E(0, 3)|)))/0.B(t)

=











(|E(0, 3)|E 2.getD S−)/0.B(t) if b1 = t,

(S− E 2.getD (0.set:f ◦ |E(0, 3)|))/0.B(t) if b1 = f,

D if b1 = d,

=



















|E(0, 3)|/0.B(t) if b1 = t = b2,

(0.set:f ◦ |E(0, 3))|/0.B(t) if b1 = f = b2,

S− if d 6= b1 6= b2 6= d,

D if b1 = d or b2 = d,

=



















|E(0, 3)|/0.B(t) if b1 = t = b2,

tau ◦ (|E(0, 3)|/0.B(f)) if b1 = f = b2,

S− if d 6= b1 6= b2 6= d,

D if b1 = d or b2 = d,

=







































tau ◦ S+ if b1 = t = b2 = b3,

tau ◦ S− if b1 = t = b2 and b3 = f,

tau ◦ tau ◦ S+ if b1 = f = b2 = b3,

tau ◦ tau ◦ S− if b1 = f = b2 and b3 = t,

S− if d 6= b1 6= b2 6= d, and

D if b1 = d or b2 = d or b1 = b2 6= d = b3.

Thus

(|E(1, 2, 3)|/0.B(t))!⊕3
i=1 B(bi) =











t if b1 = b2 = b3 6= d,

d if b1 = d or b2 = d or b1 = b2 6= d = b3,

f otherwise.

Here ⊕3
i=1B(bi) abbreviates the service family 1.B(b1)⊕ 2.B(b2)⊕ 3.B(b3). An equality test

for 3 registers can be written in several ways: e.g. without backward jumps by replacing the
jump \#3 by !f. Also the use of an auxiliary register can be omitted. We shall come back
to this issue in Proposition 4.2.

In the case of regular threads, one can show that projection distributes over use, i.e. that
πn(T/S) = πn(T)/S for n ∈ N. It then follows from the Approximation Induction Principle
that

∧

n≥0

πn(T)/S = πn(T
′)/S ′ ⇒ T/S = T ′/S ′.

For more information about services we refer to [6, 8].

9

4 Backward jumps

Backward jumps \#l (l ∈ N) are of obvious importance for constructing instruction se-
quences with loops. Now one may ask how vital are backward jumps? Consider a; \#1—a
PGLBbt(A) instruction sequence which prescribes the execution of the atomic action a fol-
lowed by a backward jump of length 1. This instruction sequence produces the thread T
with T = a ◦ T—a thread that performs the action a followed by a recursive invocation of
the thread. Clearly no X ∈ IS(A) can produce a thread with an unbounded number of
successive a’s. Thus backward jumps add to the expressiveness of PGLBbt(A).

In the field of expressiveness and computational complexity one classifies computational
problems according to their inherent difficulty. A computational problem can be viewed as an
infinite collection of instances together with a solution for every instance. It is conventional
to represent both instances and solutions by binary strings. We adopt B = {t, f} as the
preferred binary alphabet and associate with each computational problem a partial function

F : B∗ p
−→ B deciding partially whether a certain instance has a solution. In this section, we

study the complexity of computing such computational problems. In the sequel, we denote
by IS lf (A) the set of loop-free PGLBbt(A) instruction sequences, i.e. the set of PGLBbt(A)
instruction sequences without backward jumps. Moreover, we write length(I) for the number
of instructions of I ∈ IS(A).

Definition 4.1.

1. Let F = Fin ∪ Faux where Fin = {in :n | n ∈ N} and Faux = {aux :n | n ∈ N},
M = {set:t, set:f, get} and A = {f.m | f ∈ F ,m ∈ M}.

2. Let f1, . . . , fn ∈ F and S1, . . . , Sn be services. Then ⊕ni=1fi.Si denotes the service
family f1.S1 ⊕ · · · ⊕ fn.Sn.

3. Let F : Bk
p

−→ B be a k-ary partial function on the Booleans B. I ∈ IS(A) is said to
compute F using l auxiliary registers if for all b1, . . . , bk ∈ B

(|I|/ ⊕li=1 aux:i.B(t))!⊕ki=1 in:i.B(bi) =

{

F (b1, . . . , bk) if F (b1, . . . , bk) is defined,

d otherwise.

Moreover, we say that I computes F if I computes F using l auxiliary registers for
some l ∈ N, and I computes F without the use of auxiliary registers if l = 0.

Proposition 4.2. Let F : Bk
p

−→ B be a k-ary partial function on the Booleans B. Then
F can be computed by an I ∈ IS lf (A) with length 3 × 2k − 2 without the use of auxiliary
registers.

Proof: By induction on k, we construct an instruction sequence IF ∈ IS lf (A) that
computes F . If k = 0, then F () is either t, f or undefined. Thus we can take for IF either
!t, !f or #0. Let F be k+1-ary and consider the functions Gb(b1, . . . , bk) = F (b1, . . . , bk, b)
with b ∈ {t, f}. By the induction hypothesis Gb can be computed by some IGb

∈ IS lf (A)

10

with length 3× 2k − 2 without the use of auxiliary registers. Then

(|−in:k+1.get; #3×2k−1; IGt
; IGf

|/∅)!⊕k+1
i=1 i.B(bi) =











(|IGt
|/∅)!⊕ki=1 i.B(bi) if bk+1 = t,

(|IGf
|/∅)!⊕ki=1 i.B(bi) if bk+1 = f,

d otherwise.

Thus IF = −in:k + 1.get; #3 × 2k − 1; IGt
; IGf

computes F without the use of auxiliary
registers or backward jumps and has length 2 + 2× (3× 2k − 2) = 3× 2k+1 − 2. �

Thus backward jumps are not necessary for the computation of partial Boolean functions.
However, they can make a contribution to the expressiveness of PGLBbt(A) by allowing
shorter instruction sequences for computing a given computational problem.

Definition 4.3. For F : B∗ p
−→ B, we denote by Fk (k ∈ N) the restriction of F to Bk and

distinguish the following three classes of computational problems.

1. IS lf
P (A) =

{F : B∗ p
−→ B | there exists a polynomial function h : N → N

such that for all k ∈ N,

Fk can be computed by an I ∈ IS lf (A) with length(I) ≤ h(k)}

2. ISP (A) =

{F : B∗ p
−→ B | there exists a polynomial function h : N → N

such that for all k ∈ N,
Fk can be computed by an I ∈ IS(A) with length(I) ≤ h(k)}

3. IS lf
E(A) =

{F : B∗ p
−→ B | there exists a c ∈ N such that for all k ∈ N,

Fk can be computed by an I ∈ IS lf (A) with length(I) ≤ c× 2k}

In the sequel we denote by [B∗ p
−→ B] the set of all partial functions from B∗ to B, and

by [B∗ −→ B] the set of all total functions from B∗ to B. Restating Proposition 4.2, we have

Proposition 4.4. IS lf
E(A) = [B∗ p

−→ B]

In nonuniform complexity theory, P/poly is the complexity class of computational prob-
lems solved by a polynomial-time Turing machine with a polynomial-bounded advice func-
tion. It is also equivalently defined as the class PSIZE of problems that have polynomial-size
Boolean circuits.

Theorem 4.5. IS lf
P (A) ∩ [B∗ −→ B] = P/poly

11

Proof: We shall prove the inclusion ⊆ using the definition of P/poly in terms of Turing
machines that take advice, and the inclusion ⊇ using the definition in terms of Boolean
circuits.

⊆: Suppose that F ∈ IS lf
P (A) ∩ [B∗ → B]. Then, for all k ∈ N, there exists an Ik ∈

IS lf (A) that computes Fk with length(Ik) polynomial in k. Then F can be computed by
a Turing machine that, on input of size k, takes a binary description of Ik as advice and
then just simulates the execution of Ik. It is easy to see that under the assumption that
instructions of the form in:i.m,+in:i.m,−in:i.m with i > k, and aux:i.m,+aux:i.m,−aux:
i.m, and #i with i > length(Ik) do not occur in Ik, the size of the description of Ik and
the number of steps that it takes to simulate its execution are both polynomial in k. It is
obvious that we can make the assumption without loss of generality. Hence, F is also in
P/poly.

⊇: We first show that a function F : Bk → B that is induced by a Boolean circuit
C consisting of NOT, AND and OR gates can be computed by an IC ∈ ISlf (A). More
precisely, assuming that {gi1 , . . . , gin} (i1, . . . , in ∈ N) is a topological ordering of the gates
with output node gin , we prove by induction on n that we may assume that IC is of the
form I; +aux:in.get; !t; !f for some I ∈ IS lf (A) with length(I) ≤ 4× n.

If n = 1, then depending on the form of the single gate either

I¬ = +in:i.get; aux:i1.set:f; +aux:i1.get; !t; !f,
I∧ = −in:i.get; #2;−in:j.get; aux:i1.set:f; +aux:i1.get; !t; !f, or
I∨ = +in:i.get; #3;−in:j.get; aux:i1.set:f; +aux:i1.get; !t; !f

with properly chosen i, j comply. For the induction step we again have to distinguish three
cases. We here consider only the case that gin is an AND gate. Suppose that the input of gin
are the output gates gil and gim of the subcircuits C′ and C′′. By the induction hypothesis
we may assume that the functions induced by C′ and C′′ can be computed by the IS lf (A)
instruction sequences IC′ = I ′; +aux : il.get; !t; !f and IC′′ = I ′′; +aux : im.get; !t; !f with
length(IC′) ≤ 4 × |C′| and length(IC′′) ≤ 4 × |C′′| where the sizes |C′| and |C′′| are the
number of gates in the respective subcircuits. Then

IC = I ′; I ′′;−aux:il.get; #2;−aux:im.get; aux:in.set:f; +aux:in.get; !t; !f

computes F and length(I) = length(I ′) + length(I ′′) ≤ 4 × |C′| + 4 × |C′| ≤ 4 × n. If one
input is an input node, a shorter instruction sequence suffices, e.g. I ′;−in:j.get; #2;−aux:
il.get; aux:in.set:f; +aux:in.get; !t; !f.

Now suppose that F ∈ P/poly. Then, for all k ∈ N, there exists a Boolean circuit Ck
such that Ck computes Fk and the size of Ck is polynomial in k. From the above and the
fact that linear in the size of Ck implies polynomial in k, it follows that F is also in IS lf

P (A).
�

Combining Proposition 4.4 and the previous theorem, we have

Corollary 4.6. P/poly (IS lf
P (A) ⊆ ISP (A) ⊆ IS lf

E(A)

In the remainder of this section we shall show—adopting a reasonable assumption—that
also the second inclusion is proper.

12

The satisfiability problem 3SAT is concerned with efficiently finding a satisfying assign-
ment to a propositional formula. The input is a conjunctive normal form where each clause
is limited to at most 3 literals—a 3-CNF formula. The goal is to find an assignment to the
variables that makes the entire expression true, or to prove that no such assignment exists.
This problem is NP-complete, and therefore no polynomial-time algorithm can succeed on
all 3-CNF formulae unless NP ⊆ P/poly [12, 14]. The latter implies the collapse of the
polynomial hierachy as was proved by Karp and Lipton in 1980 [13].

3SAT (k) can be computed by instruction sequences with polynomial length if we allow
backward jumps. Under the hypothesis that NP 6⊆ P/poly, it then follows that instruction
sequences for this decision problem without backward jumps have to be significantly longer.

Theorem 4.7. 3SAT ∈ ISP (A)

Proof: If the number of Boolean variables is k, then there are 8k3 possible clauses of
length 3—we allow multiple occurrences of a variable in a single clause and neglect the order
of the literals. We will encode a 3-CNF ψ over k Boolean variables as a sequence of Boolean
values 〈b〉ψ of length 8k3 where a t indicates that a certain clause occurs in the 3-CNF

and a f excludes the clause. Vice versa, given a sequence 〈b〉 ∈ B8k3 we denote the 3-CNF

obtained from 〈b〉 by ψ〈b〉 and define 3SAT (k) : B8k3 → B by

3SAT (k)(〈b〉) =

{

t if ψ〈b〉 is satisfiable,

f otherwise.

We let {v1, . . . , vk} be Boolean variables and define for 〈l,m, n, i〉 ∈ {1, . . . , k}3 × {1, . . . , 8}
the clause γ〈l,m,n,i〉 by

γ〈l,m,n,i〉 =



























































vl ∨ vm ∨ vn if i = 1,

vl ∨ vm ∨ ¬vn if i = 2,

vl ∨ ¬vm ∨ vn if i = 3,

vl ∨ ¬vm ∨ ¬vn if i = 4,

¬vl ∨ vm ∨ vn if i = 5,

¬vl ∨ vm ∨ ¬vn if i = 6,

¬vl ∨ ¬vm ∨ vn if i = 7,

¬vl ∨ ¬vm ∨ ¬vn if i = 8,

and the instruction sequence CHECK 〈l,m,n,i〉 by

CHECK 〈l,m,n,i〉 =



























































+aux:l.get; #2;+aux:m.get; #2;+aux:n.get if i = 1,

+aux:l.get; #2;+aux:m.get; #2;−aux:n.get if i = 2,

+aux:l.get; #2;−aux:m.get; #2;+aux:n.get if i = 3,

+aux:l.get; #2;−aux:m.get; #2;−aux:n.get if i = 4,

−aux:l.get; #2;+aux:m.get; #2;+aux:n.get if i = 5,

−aux:l.get; #2;+aux:m.get; #2;−aux:n.get if i = 6,

−aux:l.get; #2;−aux:m.get; #2;+aux:n.get if i = 7,

−aux:l.get; #2;−aux:m.get; #2;−aux:n.get if i = 8.

13

Observe that the snippet CHECK 〈l,m,n,i〉 checks whether a certain assignment—held in
the auxiliary registers b1, . . . , bk—satisfies clause γ〈l,m,n,i〉. We fix an arbitrary bijection
φ : {1, . . . , 8n3} → {1, . . . , n}3 × {1, . . . , 8} and put

m→ CHECK φ(m) = −in:m.get; #8;CHECK φ(m); #2;#9

if 1 ≤ m < 8k3, and

8k3 → CHECK φ(8k3) = −in:8k3.get; #6;CHECK φ(8k3); !t

and join the conditional checks to form the instruction sequence

CHECK = 1 → CHECK φ(1); . . . ; 8k
3 → CHECK φ(8k3).

Thus, if γφ(m) is a clause of the 3-CNF that is satisfied by the current assignment, or if the
clause does not occur in the 3-CNF, then execution of CHECK continues after the snippet
m → CHECKm with the snippet m + 1 → CHECKm+1 if m < 8k3 and terminates with
reply t if m = 8k3. If, however, γφ(m) is not satisfied by the assignment then execution
jumps with chained jumps of length 9 or—if m = 8k3—a single jump of length 6 to the first
instruction after CHECK .

In order to generate assignments we use the snippet

NEXT = NEXT 1; · · · ;NEXT k

where
NEXT i = −aux:i.get; #3; aux:i.set:f; #5; aux:i.set:t

for 1 ≤ i < k and

NEXT k = −aux:k.get; #3; aux:k.set:f; #3; aux:k.set:t; !f

Observe that, starting with the assignment ⊕ki=1aux:i.B(t), repeated execution of NEXT
generates all possible assignments. After the last assignment ⊕ki=1aux:i.B(f), all values are
set back to t and the generator terminates with reply f.

We combine the checks and the assignment generator and define

Ik = CHECK ;NEXT ; \#(72k3 + 5k).

Then

(|Ik|/⊕
k
i=1 aux:i.B(t))!⊕8k3

i=1 in:i.B(bi) =

{

t if ψ〈bi〉 is satisfiable,

f otherwise.

Thus Ik computes 3SAT (k) using k auxiliary registers. Since Ik has 72k
3+5k+1 instructions,

we may conclude that 3SAT ∈ ISP (A). �

Corollary 4.8. If NP 6⊆ P/poly then IS lf
P (A) (ISP (A).

Proof: Suppose 3SAT ∈ IS lfP , then 3SAT ∈ P/poly by Theorem 4.5 and hence NP ⊆
P/poly. �

14

5 Conclusion

Program algebra is a setting suited for investigating instruction sequences. In this setting, we
have shown that each partial Boolean function can be computed by an instruction sequence
without the use of auxiliary registers or backward jumps. Hence backward jumps do not
contribute to the expressiveness of instruction sequences. However, instruction sequences
can be significantly shorter when backward jumps and auxiliary registers are permitted.
Thus, semantically we can do without backward jumps. However, if we want to avoid an
explosion of the length of instruction sequences, then backward jumps are essential. It
remains an open problem whether the third inclusion in Corollary 4.6 is proper.

References

[1] J.A. Bergstra and I. Bethke. Polarized process algebra and program equivalence. In
J.C.M. Baeten, J.K. Lenstra, J. Parrow, and G.J. Woeginger, editors, Automata, Lan-
guages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven,
The Netherlands, June 30 - July 4, Springer-Verlag, LNCS 2719:1-21, 2003.

[2] J.A. Bergstra, I. Bethke, and A. Ponse. Decision problems for pushdown threads. Acta
Informatica, 44(2):75–90, 2007.

[3] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal of Logic
and Algebraic Programming, 51(2):125–156, 2002.

[4] J.A. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving. Formal
Aspects of Computing, 19(4):445–474, 2007.

[5] J.A. Bergstra and C.A. Middelburg. Functional units for natural numbers.
arXiv:0911.1851v1, 2009.

[6] J.A. Bergstra and C.A. Middelburg. Instruction sequence processing operators.
arXiv:0909.2088, 2009.

[7] J.A. Bergstra and C.A. Middelburg. Autosolvability of Halting Problem instances for
instruction sequences. arXiv:0911.5018, 2009.

[8] J.A. Bergstra and A. Ponse. Combining programs and state machines. Journal of Logic
and Algebraic Programming, 51:175–192, 2002.

[9] D.B. Bui and A.V. Mavlyanov Theory of program algebras. Ukrainian Mathmatical
Journal, 36(6):761–764, 1984.

[10] D.B. Bui and A.V. Mavlyanov Mutual derivability of operations in program algebra. I
Cybernetics and Systems Analysis, 24(1):35–39, 1988.

[11] D.B. Bui and A.V. Mavlyanov Mutual derivability of operations in program algebra.
II Cybernetics and Systems Analysis, 24(6):1–6, 1988.

15

http://arxiv.org/abs/0911.1851
http://arxiv.org/abs/0909.2088
http://arxiv.org/abs/0911.5018

[12] S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd FOCS, IEEE
Computer Society, 151–158, 1971.

[13] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform com-
plexity classes. In Proc. 12th STOC, ACM, 302–309, 1980.

[14] L.A. Levin. Universal enumeration problems. Problemy Peredači Informacii 9(3):115–
116, 1973.

[15] A. Ponse and M.B. van der Zwaag. An introduction to program and thread algebra. In
A. Beckmann et al. (editors), Logical Approaches to Computational Barriers: Proceed-
ings CiE 2006, LNCS 3988, pages 445-458, Springer-Verlag, 2006.

[16] J. von Wright. An Interactive Metatool for Exploring Program Algebras. Turku Centre
for Computer Science, TUCS Technical Report No. 247, March, 1999.

16

	1 Introduction
	2 Instruction sequences and regular threads
	3 Services
	4 Backward jumps
	5 Conclusion

