Detection of a 78 day period in the RXTE, Vela 5B, Ariel 5 all-sky monitor day of Cygnus X-2
Wijnands, R.A.D.; Kuulkers, E.; Smale, A.P.

Published in:
Astrophysical Journal

DOI:
10.1086/310390

Citation for published version (APA):
DETECTION OF A ~78 DAY PERIOD IN THE RXTE, VELA 5B, AND ARIEL 5 ALL-SKY MONITOR DATA OF CYGNUS X-2

R. A. D. WIJNANDS
Astronomical Institute “Anton Pannekoek,” University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands; rudy@astro.uva.nl

E. KUULKERS
ESA/ESTEC, Astrophysics Division (SA), P.O. Box 299, NL-2200 AG Noordwijk, The Netherlands; ekuulkers@astro.estec.esa.nl

A. P. SMALE
Laboratory for High Energy Astrophysics and Universities Space Research Association, Code 660.2, NASA/Goddard Space Flight Center, Greenbelt, MD 20771; alan@osiris.gsfc.nasa.gov

Received 1996 August 23; accepted 1996 September 30

ABSTRACT

We report the detection of a 77.7 ± 1.0 day modulation in the X-ray light curve of Cygnus X-2, obtained by the all-sky monitor on board the Rossi X-ray Timing Explorer. The modulation has an amplitude of ~40%. A secondary minimum is present with an amplitude of ~20%. The hardness of the X-ray spectrum as a function of this modulation is anticorrelated with the source intensity. Reanalysis of archival data from Vela 5B and Ariel 5 shows independent confirmation of this periodicity, with significant periods of 77.4 ± 0.2 and 77.7 ± 0.2 days, respectively. Using these three data sets we determine a single combined long-term ephemeris of JD 244,2209.0 ± 4.7 + N × (77.79 ± 0.08), where phase zero is defined as the primary minimum. The occurrence of the different intensity states found in pointed observations with the Einstein, EXOSAT, and Ginga satellites is also consistent with this ephemeris. The 78-day periodicity is therefore a reliable clock in the system, and we tentatively associate this period with the precession of a tilted accretion disk, similar to those seen in some massive X-ray binaries and Her X-1.

Subject headings: accretion, accretion disks — stars: individual (Cygnus X-2) — stars: neutron — X-rays: stars

1. INTRODUCTION

The low-mass X-ray binary (LMXB) Cyg X-2 shows long-term variations in its X-ray intensity (Holt et al. 1976, 1979; Bonnet-Bidaud & van der Klis 1982; Branduardi-Raymont, Chiappetti, & Ercan 1984; Hirano et al. 1984; Vrtilek et al. 1986, 1988; Hasinger et al. 1990; Smale & Lochner 1992; Friedhorsky, Brandt, & Lund 1995; Kuulkers, van der Klis, & Vaughan 1996; Wijnands et al. 1997). The orbital period is 9.844 days (Cowley, Crampton, & Hutchings 1979; Crampton & Cowley 1980), which is too short to account for the reported long-term variability. Extensive searches for long-periods in Cyg X-2 (with candidate periods of, e.g., 11.2 days [Ariel 5; Holt et al. 1976, 1979] and ~77, ~51, and ~45 days [Vela 5B; Smale & Lochner 1992]) have been hindered by the fact that Cyg X-2 is one of the class of LMXBs known as “Z” sources, by virtue of the Z-shaped track that they describe in the X-ray color-color diagram (Hasinger & van der Klis 1989). Due to the motion through the “Z,” the count rate can change within a couple of hours with a factor of 2 or more, especially when the source enters the upper limb (“horizontal branch”) or the lower limb (“flaring branch”). This stochastic, short-term variation influences the average count rate, making it harder to detect a long-term period.

We report the detection of a ~78 day modulation in the X-ray light curve of Cyg X-2 as obtained by the all-sky monitor on board the Rossi X-ray Timing Explorer, and the results of a reanalysis of data from previous experiments. A preliminary announcement appeared in Smale, Kuulkers, & Wijnands (1996).

2. OBSERVATIONS AND ANALYSIS

The all-sky monitor (ASM; Levine et al. 1996) on board the Rossi X-ray Timing Explorer (RXTE; Bradt, Rothschild, & Swank 1993) scans the sky in series of ~90 s dwells in three energy bands, 1.5–3, 3–5, and 5–12 keV. Due to satellite motion and a 40% duty cycle (Levine et al. 1996), any given source is scanned 5–10 times per day. For a discussion of the ASM we refer to Levine et al. (1996). For our analysis we used the quick-look results provided by the RXTE ASM team, covering the period from 1996 February 23 to 1996 August 15.

The archival HEASARC Vela 5B XC and Ariel 5 ASM data spanned the intervals from 1969 May 27 to 1979 June 18, and from 1974 October 18 to 1980 March 2, respectively. For the Vela 5B data, which were free of source confusion (Smale & Lochner 1992), we used only the data in the first energy channel (3–12 keV), because of its higher signal-to-noise ratio (SNR) compared to the second channel (6–12 keV). In order to improve the SNR for the first channel we used 56-hour averages of the data. The Ariel 5 data (3–6 keV), with a time resolution of ~100 minutes, had a better SNR and no averaging was required. The Ariel 5 data are contaminated with a yearly variation attributable to solar X-ray scattering or fluorescence off the Earth’s atmosphere (Friedhorsky, Terrell, & Holt 1983). This effect contributed counts for sources occulted by the Earth, which gave rise to a yearly varying count rate. We used the Ariel 5 data that were not corrected for this effect, which resulted in a strong peak in the Lomb-Scargle periodogram of order 1 year (§ 3.2).

We used the Lomb-Scargle periodogram (Lomb 1976;...
Scargle (1982) in order to search for periodicities. Other methods (e.g., a standard period-folding technique) were used to confirm our analysis. In order to determine the ephemeris of a periodic modulation we fitted a sinusoidal function to the data. The errors were determined using $\Delta\chi^2 = 2.7$, representing 90% confidence.

3. RESULTS

3.1. RXTE All-Sky Monitor Data

The 1.5–12 keV ASM light curve of Cyg X-2 (Fig. 1, upper panel) clearly shows a pattern that occurs twice. The count rate varies between 15 ASM counts s$^{-1}$ and 60 ASM counts s$^{-1}$. In addition to this pattern there is also a degree of stochastic scattering that is probably due to the motion through the Z track and remaining systematic errors. The spectral hardness, defined as the ratio of the count rates in the 5–12 keV and 1.5–3 keV bands, is roughly anticorrelated with the variation in the 1.5–12 keV count rate (Fig. 1, lower panel). The daily average spectral hardness versus the daily average total count rate (Fig. 2) shows a clear decrease of the spectral hardness with increasing count rate, but also considerable intrinsic scattering, which again is probably due to motion of Cyg X-2 through the Z track and remaining systematic errors in the data. Fitting a straight line to the data, we find the following relation ($\chi^2_{\text{red}} = 0.99$ for 165 dof) between the spectral hardness (SH) and the total count rate (CR) of $\text{SH} = 1.27 \pm 0.05 - (0.0060 \pm 0.0015) \text{CR}$.

The Lomb-Scargle periodogram of the light curve (Fig. 3, upper panel) shows several peaks above 10 days with more than 99% confidence. The most significant peak occurs at 77.7 days, the second strongest peak occurs at 36.8 days. We do not find a significant peak near the orbital period. Fitting a sine wave to the data at the ~78 day period results in an ephemeris of

$$\text{JD2450222.0} \pm 0.7 + N(77.7 \pm 1.0),$$

with phase zero defined as the primary minimum. The full amplitude of the 77.7 day modulation is 40%. A shallower (20%) secondary minimum is observed at phase 0.5, giving rise to the peak at ~37 days; these features can be seen clearly in the folded light curve in Figure 4 (upper panel). One should keep in mind that the RXTE ASM folded light curve is double peaked, and therefore fitting a single sine wave is only approximately correct.

3.2. The Ariel 5 and Vela 5B Data

We reanalyzed the Vela 5B XC data (previously discussed by Smale & Lochner 1992) and the Ariel 5 ASM data (previously discussed by Holt et al. 1976, 1979; Vrtilek et al. 1988). The

$$\text{JD2450222.0} \pm 0.7 + N(77.7 \pm 1.0),$$

with phase zero defined as the primary minimum. The full amplitude of the 77.7 day modulation is 40%. A shallower (20%) secondary minimum is observed at phase 0.5, giving rise to the peak at ~37 days; these features can be seen clearly in the folded light curve in Figure 4 (upper panel). One should keep in mind that the RXTE ASM folded light curve is double peaked, and therefore fitting a single sine wave is only approximately correct.

3.2. The Ariel 5 and Vela 5B Data

We reanalyzed the Vela 5B XC data (previously discussed by Smale & Lochner 1992) and the Ariel 5 ASM data (previously discussed by Holt et al. 1976, 1979; Vrtilek et al. 1988). The

$$\text{JD2450222.0} \pm 0.7 + N(77.7 \pm 1.0),$$

with phase zero defined as the primary minimum. The full amplitude of the 77.7 day modulation is 40%. A shallower (20%) secondary minimum is observed at phase 0.5, giving rise to the peak at ~37 days; these features can be seen clearly in the folded light curve in Figure 4 (upper panel). One should keep in mind that the RXTE ASM folded light curve is double peaked, and therefore fitting a single sine wave is only approximately correct.
ephemeris differs slightly from the ephemeris reported by zeroat their primary minimum. This derivation uses the latest RXTE numbers (N) of the by fitting a straight line through the epochs and the cycle numbers (N) of the Vela 5B (N = 0), Ariel 5 (N = 15), and RXTE (N = 103) ephemerides. All ephemerides have phase zero at their primary minimum. This derivation uses the latest RXTE ASM data and takes into account the double-peaked nature of the folded light curves, and therefore the overall ephemeris differs slightly from the ephemeris reported by Ariel 5 and for the ephemeris found in the Vela 5B and Ariel 5 data. We determined the ephemerides of the Vela 5B and Ariel 5 data. We aligned the primary minima in the Vela 5B and Ariel 5 folded light curves to phase zero, resulting in the following ephemeris for the Vela 5B data of

JD2442211.4 ± 2.0 + N(77.42 ± 0.17),

and for the Ariel 5 data of

JD2443373.0 ± 1.6 + N(77.69 ± 0.22).

We have derived a single overall ephemeris of

JD2442209.0 ± 4.7 + N(77.79 ± 0.08)

by fitting a straight line through the epochs and the cycle numbers (N) of the Vela 5B (N = 0), Ariel 5 (N = 15), and RXTE (N = 103) ephemerides. All ephemerides have phase zero at their primary minimum. This derivation uses the latest RXTE ASM data and takes into account the double-peaked nature of the folded light curves, and therefore the overall ephemeris differs slightly from the ephemeris reported by Ariel 5 and for the ephemeris found in the Vela 5B and Ariel 5 data. We determined the ephemerides of the Vela 5B and Ariel 5 data. We aligned the primary minima in the Vela 5B and Ariel 5 folded light curves to phase zero, resulting in the following ephemeris for the Vela 5B data of

JD2442211.4 ± 2.0 + N(77.42 ± 0.17),

and for the Ariel 5 data of

JD2443373.0 ± 1.6 + N(77.69 ± 0.22).

We have derived a single overall ephemeris of

JD2442209.0 ± 4.7 + N(77.79 ± 0.08)

by fitting a straight line through the epochs and the cycle numbers (N) of the Vela 5B (N = 0), Ariel 5 (N = 15), and RXTE (N = 103) ephemerides. All ephemerides have phase zero at their primary minimum. This derivation uses the latest RXTE ASM data and takes into account the double-peaked nature of the folded light curves, and therefore the overall ephemeris differs slightly from the ephemeris reported by Ariel 5 and for the ephemeris found in the Vela 5B and Ariel 5 data. We determined the ephemerides of the Vela 5B and Ariel 5 data. We aligned the primary minima in the Vela 5B and Ariel 5 folded light curves to phase zero, resulting in the following ephemeris for the Vela 5B data of

JD2442211.4 ± 2.0 + N(77.42 ± 0.17),

and for the Ariel 5 data of

JD2443373.0 ± 1.6 + N(77.69 ± 0.22).

We have derived a single overall ephemeris of

JD2442209.0 ± 4.7 + N(77.79 ± 0.08)

by fitting a straight line through the epochs and the cycle numbers (N) of the Vela 5B (N = 0), Ariel 5 (N = 15), and RXTE (N = 103) ephemerides. All ephemerides have phase zero at their primary minimum. This derivation uses the latest RXTE ASM data and takes into account the double-peaked nature of the folded light curves, and therefore the overall ephemeris differs slightly from the ephemeris reported by
the central source. There are no detailed physical models describing how such a tilted disk could be created, though possible mechanisms include slaving of the disk to the companion star, tidal, magnetic, or radiation pressure torques in the system (Priedhorsky & Holt 1987). Schandl & Meyer (1994) proposed that coronal winds are producing the tilted shape of the accretion disk in Her X-1.

The most likely interpretation (Priedhorsky & Holt 1987) for the long-term variations in other LMXBs than Cyg X-2 (e.g., 4U 1820−30, the Rapid Burster, 4U 1915−05, Aql X-1, excluding Her X-1) is a variation in the mass accretion rate (\(\dot{M} \)) onto the compact object. Several arguments (Priedhorsky & Holt 1987) are in favor of this interpretation. The burst activity of 4U 1820−30 and the Rapid Burster is correlated with the long-term variation, the optical intensity of Aql X-1 is strongly correlated with the X-ray intensity and the ratio of the long period (\(P_{\text{long}} \)) to the orbital period (\(P_{\text{orb}} \)) is of the order of 10^3 to 10^4, whereas the high-mass systems, \(P_{\text{long}}/P_{\text{orb}} \) are in the range of 10 to 50. The high ratio for the LMXBs makes it unlikely that those variations are due to a precessing accretion disk. However, these arguments that changes in \(\dot{M} \) cause the long-term variations do not apply to the 78-day variation in Cyg X-2. The burst activity of Cyg X-2 is not correlated with the overall intensity (Kuulkers, van der Klis, & van Paradijs 1995; Wijnands et al. 1997), and \(P_{\text{long}}/P_{\text{orb}} \) is ~8, indicating that Cyg X-2 is more similar to the high-mass systems than the low-mass systems. Kuulkers et al. (1996) also concluded that the different overall intensity levels found in the \(\text{EXOSAT} \) data cannot be caused by changes in \(\dot{M} \). In both the high and the medium level (but not the low level) \(Z \)-shaped tracks are observed, indicating that the difference in overall intensity is not caused by variations in \(\dot{M} \). Instead, the motion through the \(Z \) track is thought to be caused by changes in \(\dot{M} \) (see Hasinger & van der Klis 1989). Therefore, we tentatively associate the 78-day period found in the light curves of Cyg X-2 with the precession of the accretion disk in the system.

This paper utilizes quick-look results made publicly available by the ASM/RXTE Team, including members at MIT and NASA GSFC, and also data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/GSFC. This work was supported in part by the Netherlands Organization for Scientific Research (NWO) under grant PG 78-277. E. K. acknowledges receipt of an ESA fellowship. We thank Michiel van der Klis for helpful discussions and comments on a previous version of this letter.

REFERENCES

Smail, A. P., Kuulkers, E., & Wijnands, R. A. D. 1996, IAU Circ. 6452