Pricing long-term options with stochastic volatility and stochastic interest rates
van Haastrecht, A.

Citation for published version (APA):
van Haastrecht, A. (2010). Pricing long-term options with stochastic volatility and stochastic interest rates
Zutphen: Wohrmann Print Service

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 6

Monte Carlo Pricing in the Schöbel-Zhu Model and its Extensions

*This chapter is based on:

6.1 Introduction

Stochastic volatility models nowadays have become the de facto standard to price and hedge complex financial products; in derivative models the behaviour of financial derivatives is usually modeled by stochastic differential equations that jointly describe the movements of the underlying financial assets such as the stock prices, stock variances and interest rates. Though certain models yield closed-form solutions for some products, the vast majority cannot be priced in closed-form. Nonetheless, Monte Carlo methods provide a popular and flexible pricing alternative to value such exotic derivatives. Due to technical advances such as multi-processor programming, increasing computational power and variance reduction techniques, Monte Carlo techniques are expected to become even more widely applicable in the near future. Taking these advances into account, Monte Carlo techniques are still computationally relatively expensive, hence much attention goes out to efficient simulation schemes aiming to minimize the computational efforts whilst retaining a high degree of accuracy.

In the last decennium the literature on efficient simulation schemes for stochastic volatility evolved. Approaches to price derivatives with stochastic volatility models were described in Hull and White (1987), Stein and Stein (1991), Heston (1993) and the Schöbel and Zhu (1999) model. The latter two models stand out for allowing the stochastic volatility to be correlated with the underlying asset, whilst still allowing for a closed-form formulas for most vanilla options used in the model’s calibration. Discretization schemes for models have been described by several authors, for example Jäckel (2002), Glasserman (2003), Kahl and Jäckel (2006), Andersen
Chapter 6. Monte Carlo Pricing in Schöbel-Zhu-like Models

(2008), Lord et al. (2008), Smith (2008) and van Haastrecht and Pelsser (2010). Most of these papers focus on efficient discretization methods for the Heston (1993) model, paying particular attention to the discretization of the underlying square-root variance process. Andersen (2008) was the first to make the key observation that for any discretization scheme of the Heston (1993) model it is crucially important to match the correlation between the underlying and the variance process as close as possible. Simple Euler schemes which do not take this into account, suffer from the so-called 'leaking correlation' phenomenon.

In this chapter, simulation schemes are presented for the Schöbel and Zhu (1999) (SZ) stochastic volatility model and its extensions. Instead of only focussing on the simulation of the volatility process, which in the case of the SZ model is normally distributed and hence can easily be simulated exactly, like Andersen we also pay particular attention to the aforementioned 'leaking correlation' issue. It appears that this issue is a general problem in the simulation of stochastic volatility models. As we aim for our analysis to be as broadly applicable as possible, we also consider an extension of the SZ model which incorporates stochastic interest rates: the Schobel-Zhu-Hull-White (SZHW) model, as considered in Chapter 3. This extension combines the SZ model with the 1-factor Gaussian interest rate model of Hull and White (1993), allowing for a general correlation structure between all processes. This is closely related to the recent advances in the development of a market for long-maturity European options in equity and exchange rate derivatives, showing liquid quotes for European options ranging up to 15 years, for which maturities we feel a model including stochastic interest rates is more suitable. Finally, we note that the methods presented here also facilitate the pricing of interest rate derivatives in the context of stochastic volatility Libor Market Models, e.g. see Zhu (2007).

The remainder of the chapter is organized as follows. First, the SZ model is described in Section 6.2. Section 6.3 analyzes the problem of leaking correlations in the Schöbel and Zhu (1999) and Heston (1993) stochastic volatility models. In Section 6.4 discretization schemes are presented for the SZ model. These results are extended with stochastic interest rates in Section 6.5. In Section 6.6 numerical examples are worked out, showing the impact of leaking correlations in Monte Carlo methods for stochastic volatility models. Conclusions are given in Section 6.7.

6.2 The Schöbel-Zhu model

The risk-neutral log-asset price dynamics of the Schöbel and Zhu (1999) model read

\[
\begin{align*}
\frac{d \ln S(t)}{} &= -\frac{1}{2} \nu^2(t) dt + \nu(t) dW_S(t), \\
\frac{d \nu(t)}{} &= \kappa(\psi - \nu(t)) dt + \tau dW_{\nu}(t), \\
\frac{d \nu^2(t)}{} &= 2\kappa \left(\frac{\nu^2}{2\kappa} + \psi \nu(t) - \nu^2(t) \right) dt + 2\tau \nu(t) dW_{\nu}(t),
\end{align*}
\]

\[\ln S(0) = \ln(x_0), \quad \nu(0) = \nu_0, \quad \nu^2(0) = \nu_0^2, \quad (6.1, 6.2, 6.3)\]
6.3. Leaking correlation in stochastic volatility models

where κ, ψ, τ are positive parameters corresponding to the mean reversion, long-term volatility and volatility of the volatility process and with $W_{\lambda}(t)$ and $W_{\nu}(t)$ two Brownian motion under the risk-neutral measure Q with linear correlation coefficient $\rho_{\lambda\nu}$. Note that (6.3) is equivalent to (6.2), as can be derived with Itô’s lemma. For ease of notation, we assume (constant) zero interest rates here. The case of stochastic interest rates is considered in Section 6.5.

6.3 Leaking correlation in stochastic volatility models

One of the major problems Andersen (2008) signalled with Euler schemes of the Heston (1993) model, see Lord et al. (2008) for an overview, is their inability to generate a correlation between the increments of the asset and the stochastic volatility processes which resembles that of the true process. As the correlation parameter in stochastic volatility models is an important determinant of the skew in implied volatilities, one can imagine that not being able to match this parameter can lead to a significant mispricing of options with strikes that are further away from the at-the-money level.

Such problems in the Heston model are partially caused by the fact that an Euler discretization tries to approximate a Feller process, which is guaranteed to be positive, by a Gaussian process. While stochastic volatility in the Schöbel and Zhu (1999) (SZ) model is itself Gaussian, we will show that 'leaking correlation' as this phenomenon has been dubbed, is still an issue. Before we can design an effective simulation scheme for the SZ model and its extensions, we will have to return to the Heston model and pinpoint exactly why Andersen’s simulation schemes are successful in reproducing the right correlation.

In this section we will focus on a special case of the SZ model where the long-term level of mean reversion for the volatility $\nu(t)$, ψ, equals zero. This special case also happens to be a special case of the Heston model, which can be seen from the dynamics of $\nu^2(t)$

$$
dv^2(t) = \left(\tau^2 - 2\kappa \nu^2(t)\right)dt + 2\tau \nu(t)dW_{\nu}(t). \tag{6.4}
$$

In this case the Heston and SZ parameters are related as follows

$$
\kappa_H \mapsto 2\kappa, \quad \psi_H \mapsto \frac{\tau^2}{2\kappa}, \quad \tau_H \mapsto 2\tau. \tag{6.5}
$$

Recall that from (6.2) we can easily see that the volatility process follows a standard Gaussian distribution. When $\psi = 0$, we can write

$$
\nu(t + \Delta) = K_1 \nu(t) + K_2 Z_{\nu}, \tag{6.6}
$$

with

$$
K_1 = e^{-\kappa \Delta}, \quad \text{and} \quad K_2 = \tau \sqrt{\frac{1 - e^{-2\kappa \Delta}}{2\kappa}}. \tag{6.7}
$$
For the log-asset price, integrating the SDE in (6.1), this yields

\[
\ln S(t + \Delta) = \ln S(t) - \frac{1}{2} \int_t^{t+\Delta} \nu^2(u)du + \rho_{S\nu} \int_t^{t+\Delta} \nu(u)dW'_\nu(u) + \rho_{S\nu} \int_t^{t+\Delta} \nu(u)d\tilde{W}_S(u),
\]

(6.8)

where \(W'_\nu \) and \(\tilde{W}_S \) are independent Brownian motions and \(\rho_{S\nu} := \sqrt{1 - \rho^2_{S\nu}} \). Using an Euler discretization, this would become

\[
\ln S(t + \Delta) = \ln S(t) - \frac{1}{2} \nu^2(t)\Delta + \nu(t) \sqrt{\Delta} \left(\rho_{S\nu} Z_\nu + \sqrt{1 - \rho^2_{S\nu}} Z_S \right),
\]

(6.9)

with \(Z_\nu, Z_S \) standard normally distributed random variables. Conditional upon \(S(t) \) and \(\nu(t) \), the correlation between \(\ln S(t + \Delta) \) and \(\nu(t) \) in the Euler scheme equals

\[
\text{Corr}[\ln S(t + \delta t), \nu(t + \delta t)] = \frac{\text{Cov}[\ln S(t + \delta t), \nu(t + \Delta)]}{\sqrt{|\nu(t)| \sqrt{\delta t}}} = \rho_{S\nu} \text{sgn}(\nu(t)),
\]

(6.10)

independent of \(\delta t \). So with a naive Euler discretization of the volatility it seems there is no 'leaking correlation', as this equals the instantaneous correlation between \(d\ln S(t) \) and \(d\nu(t) \). Let us turn to \(\nu^2(t) \) however, which is a quadratic Gaussian. After some calculations, one can show that in the Euler scheme

\[
\text{Corr}[\ln S(t + \delta t), \nu^2(t + \delta t)] = \rho_{S\nu} \frac{K_1|\nu(t)|}{\sqrt{K_1^2\nu^2(t) + \frac{1}{2}K_2^2}},
\]

(6.11)

which tends to \(\rho_{S\nu} \) as \(\nu(t) \) tends to plus or minus infinity, but can differ substantially when \(\nu(t) \) is close to zero and even equals zero when \(\nu(t) \) does. In this sense an Euler discretization in the SZ model also suffers from leaking correlation in the same way as in the Heston model. This behaviour is visualised in Figure 1.
6.3. Leaking correlation in stochastic volatility models

Figure 1: Correlation between \(\ln S(t + \Delta) \) and \(\nu^2(t + \Delta) \) for various values of the volatility \(\nu(t) \). Here we have used the parameters \(\kappa = \tau = 1, \rho = -0.3 \) and \(\Delta = \frac{1}{4} \). The central schemes use \(\delta_1 = \delta_2 \) for the drift interpolations.

Clearly the correlation from an Euler scheme is far from the exact correlation (see Andersen (2008), appendix A). A typical range for the volatility, for the Heston parameter setting of the above figure, lies between and around the positive unit interval; for instance if \(\nu(t) = 30\% \), we have that more than 99\% of the probability mass of \(\nu(t + \Delta) \) lies between \(-0.91\) and \(1.38\). Note that this interval corresponds exactly to the region where the correlation of the Euler scheme is misaligned most with the true correlation. The question is what the best way is to improve upon the Euler scheme. When we simulate \(S(t + \Delta) \), we would already have computed \(\nu(t + \Delta) \).

One possibility is therefore to approximate the integrated variance in (6.8) using a second order approximation to compute

\[
\int_t^{t+\Delta} \nu^2(u) du \approx \left[\delta_1 \nu^2(t) + \delta_2 \nu^2(t + \Delta) \right] \Delta,
\]

leading to

\[
\ln S(t + \Delta) = \ln S(t) - \frac{1}{2} \left[\delta_1 \nu^2(t) + \delta_2 \nu^2(t + \Delta) \right] \Delta + \rho S \nu(t) \cdot \left(W_S(t + \Delta) - W_S(t) \right) + \rho S \nu \sqrt{\delta_1 \nu^2(t) + \delta_2 \nu^2(t + \Delta)} \cdot \left(\bar{W}_S(t + \Delta) - \bar{W}_S(t) \right).
\]

Typically \(\delta_1 + \delta_2 = 1 \): a special case is the central discretization, where \(\delta_1 = \delta_2 = \frac{1}{2} \). As can be seen from Figure 1, using a central discretization does improve the correlation behaviour somewhat, although it is still quite far from the true correlation. Andersen’s discretization...
for the log-asset price uses an insight of Broadie and Kaya (2006) which, as can be seen by integrating the SDE of (6.4) directly, relates the first stochastic integral in (6.8) in terms of already simulated quantities and the integrated variance

\[
\int_\tau^{\tau+\Delta} v(u) dW_v(u) = \frac{v^2(t+\Delta) - v^2(t)}{2\tau} - \frac{1}{2} \frac{\kappa}{\tau} \int_\tau^{\tau+\Delta} v^2(u) du.
\]

(6.14)

Substituting this in (6.8) yields

\[
\ln S(t+\Delta) = \ln S(t) + \left(\frac{\rho S\nu \kappa}{\tau} - \frac{1}{2}\right) \int_\tau^{\tau+\Delta} v^2(u) du + \frac{\rho S\nu}{2\tau} \left[v^2(t+\Delta) - v^2(t) \right] + \sqrt{1 - \rho^2} S \int_\tau^{\tau+\Delta} v(u) d\tilde{W}_S(u).
\]

(6.15)

Once again we can choose to approximate the integrated variance with an Euler discretization, or as Andersen does in the Heston model, with a central discretization. The correlation for both schemes is analysed in Figure 1. As we can see, it is the combination of the insight of Broadie and Kaya (2006) and the central discretization which bring the correlation much more in line with the true correlation. For this reason all simulation schemes we consider in the remainder of this chapter will use Broadie and Kaya’s insight, as well as a central discretization for the integrated variance.

6.4 Simulation in the Schöbel-Zhu model

Having demonstrated in the previous section how to best preserve the correlation structure between the asset and stochastic volatility processes in a special case of the SZ model, we will now formulate our simulation scheme for the full SZ model. In addition, we will demonstrate how to apply a martingale correction such that the no-arbitrage conditions are exactly satisfied for the discretized asset price.

For those readers wondering whether an exact simulation of the SZ model is feasible a la Broadie and Kaya (2006), it should be mentioned that, contrary to the Heston model, the increment of the log-asset price process is not normally distributed conditional upon the old and new realizations of the volatility process, and the integrated variance process. In addition to the mentioned realizations, we also need to condition on the integrated volatility process, which complicates matters considerably. Nevertheless, as we have seen in the case of the Heston model, schemes based on a simple drift interpolation method are computationally much more efficient than exact transform-based methods, see Lord et al. (2008), Andersen (2008) or van Haastrecht and Pelsser (2010). From a practical point of view it is therefore not a disadvantage that an exact simulation
6.4. Simulation in the Schöbel-Zhu model

is not feasible.

Simulation scheme for the SZ model

As the volatility process \(\nu \) in (6.2) follows an Ornstein-Uhlenbeck process, we have the following explicit solution for \(\nu(t + \Delta) \) (conditional on the time-\(t \) filtration):

\[
\nu(t + \Delta) = \nu(t) e^{-\kappa \Delta} + \int_t^{t+\Delta} \kappa \psi e^{-\kappa(u-t)} du + \int_t^{t+\Delta} \tau e^{-\kappa(u-t)} dW_{\nu}(u).
\]

As it follows from Itô’s isometry that \(\nu(t + \Delta) | \nu(t) \) is normally distributed with mean \(\mu_{\nu} := K_1 \nu(t) + K_2 \) and standard deviation \(\sigma_{\nu} := K_3 \), a sample of \(\nu(t + \Delta) | \nu(t) \) can be obtained by setting

\[
\nu(t + \Delta) = K_1 \nu(t) + K_2 + K_3 Z_{\nu},
\]

where

\[
K_1 := e^{-\kappa \Delta}, \quad K_2 := \psi \left(1 - e^{-\kappa \Delta} \right), \quad K_3 := \tau \sqrt{\frac{1}{2\kappa} \left(1 - e^{-2\kappa \Delta} \right)},
\]

and \(Z_{\nu} \) is sample from the standard normal distribution. This can be generated directly and efficiently by ‘inverting’ the standard normal distribution, e.g. see Acklam (2003). Note that the above sampling of the volatility process, immediately also gives us realizations for the variance process.

As the previous section demonstrated, it is beneficial to apply the Broadie and Kaya (2006) insight and replace \(\int_t^{t+\Delta} \nu(u) d\overline{W}_S(u) \) in (6.8) by expressing it in other model quantities. This can be achieved by integrating (6.3), leading to

\[
\int_t^{t+\Delta} \nu(u) d\overline{W}_S(u) = \frac{1}{2\tau} (\nu^2(t + \Delta) - \nu^2(t)) - \tau^2 \Delta + 2\kappa \int_t^{t+\Delta} \nu^2(u) du - 2\kappa \int_t^{t+\Delta} \psi \nu(u) du.
\]

151
Substituting (6.19) in (6.8) yields

\[\ln S(t + \Delta) = \ln S(t) - \frac{1}{2} \int_t^{t+\Delta} \nu(u)du + \frac{\rho_{Sv} \psi}{\tau} \int_t^{t+\Delta} (\nu^2(u) - \psi \nu(u))du \]

\[+ \frac{\rho_{Sv}}{2\tau} \left(\nu^2(t + \Delta) - \nu^2(t) - \tau^2 \right) + \sqrt{1 - \rho_{Sv}^2} \int_t^{t+\Delta} \nu(u) W_S(u) \]

(6.20)

As in the previous section, we replace the integrals over the variance and volatility by linear combinations of their realizations at \(t \) and \(t + \Delta \)

\[\int_t^{t+\Delta} \nu^p(u)du \mid \nu(t), \nu(t + \Delta) \approx (\delta_1 \nu^p(t) + \delta_2 \nu^p(t + \Delta)) \Delta, \]

(6.21)

for \(p \in \{1, 2\} \) and some constants \(\delta_1, \delta_2 \). These constants can be set in several ways: an Euler-like setting would read \(\delta_1 = 1, \delta_2 = 0 \), while a central/mid-point/predictor-corrector method uses \(\delta_1 = \delta_2 = \frac{1}{2} \). By applying the above drift interpolation method in (6.20), one obtains the following discretization scheme

\[\ln S(t + \Delta) = \ln S(t) + C_0 + C_1 \nu(t) + C_2 \nu(t + \Delta) + C_3 \nu^2(t) + C_4 \nu^2(t + \Delta) + \sqrt{\delta_1 \nu^2(t) + \delta_2 \nu^2(t + \Delta)} C_5 Z \]

(6.22)

with

\[C_0 = -\frac{1}{2} \rho_{Sv} \tau \Delta, \quad C_1 = -\delta_1 \rho_{Sv} \frac{\psi \Delta}{\tau}, \quad C_2 = -\delta_2 \rho_{Sv} \frac{\psi \Delta}{\tau}, \]

\[C_3 = -\frac{1}{2} \delta_1 \Delta + \frac{\rho_{Sv}}{\tau} (\delta_1 \Delta - \frac{1}{2}), \quad C_4 = -\frac{1}{2} \delta_2 \Delta + \frac{\rho_{Sv}}{\tau} (\delta_2 \Delta + \frac{1}{2}), \quad C_5 = \sqrt{1 - \rho_{Sv}^2} \sqrt{\Delta}. \]

Despite the fact the scheme is based on the exact solution of the asset and volatility processes, the discretization for the log-asset is in general not a martingale, and its net drift away from a martingale can be significant for certain parameter choices. In the following section we show how to enforce this martingale condition. As (6.22) is exponentially affine after we exponentiate and take expectations with respect to the Gaussian random variates, we will refer to this scheme as an Exponentially Affine in Expectation (EAE) scheme. This property will prove to be very convenient in enforcing the exact martingale condition.

6.4.1 Martingale correction, regularity

As discussed in Andersen and Piterbarg (2007), the continuous-time asset price process \(S(t) \) might not have finite higher moments, but the stock price will always be a martingale under its
6.4. Simulation in the Schöbel-Zhu model

natural measure,

\[\mathbb{E}^Q[S(t + \Delta) | \mathcal{F}_t] = S(t) < \infty. \]

(6.23)

Here \(\mathbb{E}^Q \) denotes the expectation with respect to the risk-neutral measure \(Q \). If we replace \(S(t + \Delta) \) by its discretization, the martingale condition is no longer satisfied. Though the net drift away from the martingale is controllable by reducing the size of the time step, its size, as mentioned, can be significant depending on the parameters of the model. Following Glasserman and Zhong (2000) and Andersen (2008), we investigate whether it is possible to exactly satisfy this martingale property. Additionally, we look at the regularity of the discretization scheme: that is, we look whether there might parameter values where the \(\tilde{\xi} \)-process might blow up, see e.g. Andersen and Piterbarg (2007) for a general discussion of this phenomenon in stochastic volatility models.

First of all notice that by the tower law of conditional expectations, we have

\[\mathbb{E}^Q[\tilde{\xi}(t + \Delta) | \mathcal{F}_t] = \mathbb{E}^Q \left\{ \mathbb{E}^Q[\tilde{\xi}(t + \Delta) | \mathcal{F}_t \vee \sigma(t + \Delta)] | \mathcal{F}_t \right\}, \]

(6.24)

hence for the martingale condition (6.23) to hold, we need the latter expectation to equal \(\tilde{\xi}(t) \); using the moment-generating function of the normal distribution, we have the following for the discretized stock price \(\tilde{\xi}(t + \Delta) \),

\[\tilde{\xi}(t + \Delta) = \tilde{\xi}(t) \exp[C_0 + C_1 v(t) + C_3 v^2(t)] \mathbb{E}^Q \left\{ \exp[C_2 v(t + \Delta) + C_4 v^2(t + \Delta)] \right\} \]

\[= \tilde{\xi}(t) \exp[C_0 + C_1 v(t) + C_3 v^2(t)] \mathbb{E}^Q \left\{ \exp[C_2 v(t + \Delta) + C_4 v^2(t + \Delta) + \frac{1}{2} C_5^2 (\delta_1 v^2(t) + \delta_2 v^2(t + \Delta))] \right\}. \]

(6.25)

As mentioned earlier, this is where the EAE property of the scheme becomes apparent. We are left with evaluating the expectation of an exponentially affine form. Taking the \(\mathcal{F}_t \) measurable terms out of the expectation, and dividing by \(\tilde{\xi}(t) \), we thus find that the following expectation has to be satisfied for the martingale condition,

\[1 = \exp\left[C_0 + D_1 v(t) + D_3 v^2(t)\right] \mathbb{E}^Q \left\{ \exp\left[D_2 v(t + \Delta) + D_4 v^2(t + \Delta)\right] \right\} \mathbb{E}^Q \left\{ \exp\left[D_2 v(t + \Delta) + D_4 v^2(t + \Delta)\right] \right\} \]

(6.26)

where \(\Psi_H(t) \) denotes the moment-generating function of the (discretized) process

\[H := D_2 v(t + \Delta) + D_4 v^2(t + \Delta), \]

(6.27)

evaluated in the point \(t \), with

\[D_1 := C_1, \quad D_2 := C_2, \quad D_3 := C_3 + \frac{1}{2} (1 - \rho^2_\delta) \delta_1 \Delta, \quad D_4 := C_4 + \frac{1}{2} (1 - \rho^2_\delta) \delta_2 \Delta. \]

(6.28)
If the regularity condition $\Psi_H(1) < \infty$ is satisfied, the martingale condition (i.e. equation (6.26)) can be satisfied by setting

$$C_0^* := -D_1 \nu(t) - D_3 \nu^2(t) - \ln\left(\Psi_H(1)\right). \quad (6.29)$$

It now remains to determine the moment-generating function of the random variable H and investigate its existence. For this, we need the following lemma.

Lemma 6.4.1 Let X be a normally distributed random variable with mean μ and variance σ^2, furthermore let p and q be two constants. Then provided that the regularity condition $u q \sigma^2 < 1$ is satisfied, the moment-generating function of $Y := pX + q/2 X^2$ is given by

$$IE \exp(uY) = \exp\left(-\frac{p^2}{2q} \exp\left(\frac{u q \sigma^2}{1 - u q \sigma^2}\right)\right), \quad (6.30)$$

with:

$$\lambda = \left(\frac{\mu + p q}{\sigma}\right)^2. \quad (6.31)$$

Proof For example see Johnson et al. (1994).

Since the volatility process, conditional upon \mathcal{F}_t, is normally distributed, we can immediately use Lemma 6.4.1 with $p = D_2$ and $q = 2D_4$. Provided that $2D_4 \sigma^2 < 1$, we find that $\Psi_H(1)$ is given by

$$\Psi_H(1) = \exp\left(-\frac{D_2^2}{4D_4}\right) \exp\left(\frac{\lambda \nu(K_3)}{1 - 2D_4 K_3^2}\right), \quad (6.32)$$

with

$$\lambda := \left(\frac{\nu(K_1 + K_2 + D_2)}{K_3}\right)^2 = \left(\frac{\nu(t) K_1 + K_2 + D_2}{K_3}\right)^2, \quad (6.33)$$

with K_1, K_2 as defined in (6.17) and (6.18).

The following proposition applies the above result to the martingale correction in (6.22) and the corresponding regularity condition.

Proposition 6.4.2 The regularity of the simulation scheme (6.22) holds if and only if the following regularity condition is satisfied.

$$\frac{\tau^2}{\kappa} \left(1 - e^{-2\kappa}\right) \left[-\frac{1}{2} \rho_3^2, \delta_2 \Delta + \frac{\rho_5 \nu}{\tau} (\delta_2 \kappa \Delta + \frac{1}{2}) \right] < 1, \quad (6.34)$$
Given that this condition is satisfied, we can ensure the martingale property in the SZ-scheme of (6.22) by replacing the constant C_0 by

$$C_0^* = E_0 + E_1 \nu(t) + E_2 \nu^2(t),$$

with

$$E_0 := \frac{1}{2} \ln(1 - 2D_4 K_3^2) - \frac{D_4 (K_2 + \frac{D_0}{2D_4})^2}{1 - 2D_4 K_3^2}, \quad E_1 := -D_1 - \frac{2D_4 K_1 (K_2 + \frac{D_0}{2D_4})}{1 - 2D_4 K_3^2},$$

$$E_2 := -D_3 - \frac{D_4 K_1^2}{1 - 2D_4 K_3^2}$$

and where K_1, K_2, K_3 as defined in (6.17), (6.18) and D_1, \ldots, D_4 in (6.28).

Proof Follows immediately from the results above.

Remark 6.4.3 We note that (6.34) is not restrictive; for negative $\rho_S\nu$ (which is more than often the case in option markets), the condition is automatically satisfied. However for (strictly) positive $\rho_S\nu$ the condition (6.34) imposes a limit on the size of the time step. Nonetheless, for practical sizes of the time step (e.g. $\Delta = \frac{1}{4}$), it is unlikely that the regularity condition (6.34) will be violated. For example, with $\kappa = 1, \tau = \frac{1}{2}, \delta_1 = \delta_2 = \frac{1}{2}$ and $\rho_S\nu < 1$, this condition is satisfied as long as $\Delta < 6.18$.

6.5 Monte Carlo pricing under Stochastic Interest Rates

The Schöbel-Zhu-Hull-White (SZHW) model as introduced in Chapter 3 extends the Schöbel and Zhu (1999) model for stochastic volatility with Hull and White (1993) stochastic interest rates. For clarity, we repeat the risk-neutral model dynamics here, which read

$$dS(t) = r(t)S(t)dt + \nu(t)S(t)dw^S(t), \quad S(0) = S_0,$$

$$dv(t) = \kappa(\psi - \nu(t))dt + \tau dw_\nu(t), \quad v(0) = v_0,$$

$$dr(t) = (\theta(t) - ar(t))dt + cr^\nu dt, \quad r(0) = r_0.$$

For an explanation of the parameters we refer to Chapter 2 and 3. Recall that in SZHW model one can price vanilla European options by transforming the characteristic function of the log-asset price. However, to price more complex securities, such as path-dependent or multi-asset securities which cannot be priced in closed-form, Monte Carlo simulations of the model are often necessary. Based on the insights of the previous section, we will present a simulation scheme for the SZHW model in this section.

First of all, instead of looking at these dynamics under the risk-neutral bank account measure we change the underlying probability measure to evaluate this expectation under the T-forward
probability measure Q^T (e.g. see Geman et al. (1996)). Effectively this reduces the dimension of the Monte Carlo simulation as one can eliminate the path dependency of the stochastic interest rates in discounting future cash flows as stochastic discounting is done using T-forward bond instead of the money market account. For the analysis of the SZHW simulation it makes no real difference whether we perform the analysis under the risk-neutral or T-forward measure, as the simulation issues and corresponding solutions are the same under both setups. As we would like to focus on the SZHW specific issues, we therefore prefer working under the T-forward measure.

For an exact joint simulation of the short rate and the stochastic discount factor in the Hull and White (1993) model, which follows a bivariate normal distribution, see e.g. Glasserman (2003). To this end we define $y(t, T)$, the logarithm of the forward stock price $F(t, T)$, as

$$ y(t, T) := \ln \left(\frac{S(t)}{P(t, T)} \right) = \ln F(t, T). \quad (6.40) $$

An application of Itô’s lemma yields the following asset price dynamics

$$ dy(t, T) = -\frac{1}{2} \nu^2 F(t) dt + \nu(t) dW_T^T(t) + \sigma B_r(t, T) dW_T^r(t), \quad (6.41) $$

$$ \nu^2 F(t) := \nu^2(t) + 2 \rho \nu(t) \sigma t \nu^2(t) + \sigma^2 B^2_r(t, T), \quad (6.42) $$

with $B_r(u, T) := \frac{1}{\sigma} \left[1 - e^{-\sigma(t-u)} \right]$ and where the volatility and variance dynamics read

$$ d\nu(t) = \kappa \left(\psi - \frac{\rho \nu \sigma^2}{\kappa} B_r(t, T) \right) dt + \tau dW^\nu_T(t), \quad (6.43) $$

$$ d\nu^2(t) = 2 \kappa \left(\frac{\tau^2}{2\kappa} + \left(\psi - \frac{\rho \nu \sigma^2}{\kappa} B_r(t, T) \right)^2 \right) dt + 2 \nu(t) dW^\nu_T(t). \quad (6.44) $$

Before turning to the simulation of the asset price dynamics, we first consider the simulation of the Gaussian rate and volatility process which is common in both of the schemes we will consider.

6.5.1 Variance simulation

In the T-forward asset price dynamics the random shocks from the interest rate component are given by the Gaussian process

$$ \int_{t}^{t+\Delta} \sigma B_r(u, T) dW_T^T(u) \sim \mathcal{N}(0, G(t, t+\Delta)), \quad (6.45) $$

corresponding to the variance of the log bond price process in the Hull and White (1993) model and where

$$ G(t, t+\Delta) := V(t, T) - V(t+\Delta, T), \quad (6.46) $$
6.5. Monte Carlo pricing under Stochastic Interest Rates

with \(V \) as in Chapter 2, equation (2.13). Note that the main advantage of working under the T-forward measure there is no need to jointly simulate the short interest rate as discounting only depends on the state variable \(r(u) \) at the then current time \(u \). In contrast, when working under the risk-neutral measure with the money market account as numeraire, one simultaneously also needs to simulate the integrated short rate process for an exact stochastic discount which effectively increases the dimension of the Monte Carlo with an additional process. Nonetheless, an exact simulation is still possible since both the short rate as the integrated short rate processes is normally distributed. In this case one therefore has to determine the correlation between them to perform a joint simulation between these Gaussian terms, see Glasserman (2003).

For the Ornstein-Uhlenbeck stochastic volatility process, one has the following solution under the \(T \)-forward measure \(Q^T \):

\[
\nu(t + \Delta) = \nu(t)e^{-\kappa \Delta} + \int_t^{t+\Delta} \kappa \xi(u)e^{-\kappa(u+\Delta-u)}du + \int_t^{t+\Delta} \tau e^{-(\kappa+\alpha)(u+\Delta-u)}dW_T^\nu(u) \tag{6.47}
\]

From Itô’s isometry we therefore have that \((\nu(t+\Delta)|\nu(t)) \) is normally distributed with mean \(\mu_\nu = K_1 \nu(t) + K_2 \) and variance \(\sigma^2_\nu = K_3^2 \). A sample of \(\nu(t+\Delta)|\nu(t) \) can be obtained by:

\[
\nu(t + \Delta) = K_1 \nu(t) + K_2 + K_3 Z_\nu, \tag{6.48}
\]

with \(Z_\nu \) a standard normal distributed random variable and where:

\[
K_1 := e^{-\kappa \Delta}, \quad K_2 := \left(\psi - \frac{\rho \nu \sigma_T}{\alpha \kappa} \right)(1 - e^{-\kappa \Delta}) - \frac{\rho \nu \sigma_T}{\alpha(\kappa + \alpha)} \left(e^{-\alpha (T-t) - \kappa \Delta} - e^{-\alpha (T-t-\Delta)} \right), \tag{6.49}
\]

\[
K_3 := \tau \sqrt{\frac{1}{2\kappa} \left(1 - e^{-2\kappa \Delta} \right)}. \tag{6.50}
\]

Though the volatility and the directly related variance process can be simulated from their exact distributions, we need to resort to discretization methods for a (joint) asset price sampling. We will deal with this in the following sections.

6.5.2 Asset price sampling scheme

Recall that we have the following solution for the SZHW log-asset price solution under the \(T \)-forward measure \(Q^T \):

\[
y(t + \Delta, T) = y(t, T) - \frac{1}{2} \int_t^{t+\Delta} \nu^2_T(u)du + \sigma \int_t^{t+\Delta} B_s(u, t)dW^T_T(u) + \int_t^{t+\Delta} \nu(u)dW^T_S(u) \tag{6.51}
\]

with

\[
\nu^2_T(u) = \nu^2(u) + 2\rho_S \nu(u)\sigma B_s(u, T) + \sigma^2 B^2_T(u, T), \tag{6.52}
\]

\[
S
\]

| 157 |
and where $W_v(u)$, $w_S^T(u)$ and $w_r^T(u)$ are three correlated Brownian motions. In a Monte Carlo simulation it is often convenient to express these correlated Brownian motions in terms of three orthogonal components \tilde{W}_S^T, \tilde{W}_S^T and \tilde{W}_r^T, e.g. by using a Cholesky decomposition; the asset dynamics of (6.51) hence become

$$y(t + \Delta, T) = y(t, T) - \frac{1}{2} \int_t^{t+\Delta} \nu^2(u)du$$

$$+ \int_t^{t+\Delta} \nu(u)d\left(\rho_{Sv}\tilde{W}_v^T(u) + \sqrt{1 - \rho_{Sv}^2}\tilde{W}_S^T(u)\right)$$

$$+ \sigma \int_t^{t+\Delta} B_v(u, T)d\left(\rho_{rv}\tilde{W}_S^T(u) + \omega_{Sr}\tilde{W}_r^T(u) + \sqrt{1 - \rho_{rv}^2 - \omega_{Sr}^2}\tilde{W}_r^T(u)\right),$$

with

$$\omega_{Sr} = \frac{\rho_{Sr} - \rho_{Sv}\rho_{rv}}{\sqrt{1 - \rho_{Sv}^2}}. \quad (6.54)$$

As Section 6.4 demonstrated, it is beneficial to apply the Broadie and Kaya (2006) insight and replace $\int_t^{t+\Delta} \nu(u)d\tilde{W}_S^T(u)$ in (6.53) by expressing it in other model quantities. This can be achieved by integrating (6.44), leading to

$$\int_t^{t+\Delta} \nu(u)d\tilde{W}_S^T(u) = \frac{1}{2\tau} \left[\nu^2(t + \Delta) - \nu^2(t) + \tau^2 \Delta + 2\kappa \int_t^{t+\Delta} \nu^2(u)du - 2\kappa \int_t^{t+\Delta} \left(\psi - \frac{\rho_{rv}\sigma\tau}{\kappa} B_v(u, T)\right)\nu(u)du \right]. \quad (6.55)$$

Substituting (6.55) in (6.53) yields

$$y(t + \Delta, T) = y(t, T) - \frac{1}{2} \int_t^{t+\Delta} \nu^2(u)du + \frac{\rho_{Sv}\kappa}{\tau} \int_t^{t+\Delta} \left[\nu^2(u) - \left(\psi - \frac{\rho_{rv}\sigma\tau}{\kappa} B_v(u, T)\right)\nu(u)\right]du$$

$$+ \frac{\rho_{Sv}}{2\tau} \left(\nu^2(t + \Delta) - \nu^2(t) - \tau^2 \Delta\right) + \int_t^{t+\Delta} \left(\sqrt{1 - \rho_{Sv}^2}\nu(u) + \omega_{Sv}\sigma B_v(u, T)\right)d\tilde{W}_v^T(u)$$

$$+ \rho_{rv} \int_t^{t+\Delta} \sigma B_v(u, T)d\tilde{W}_v^T(u) + \sqrt{1 - \rho_{rv}^2 - \omega_{Sr}^2} \int_t^{t+\Delta} \sigma B_r(u, T)d\tilde{W}_r^T(u).$$
6.5. Monte Carlo pricing under Stochastic Interest Rates

This leaves us with three stochastic integrals, which we tackle in order of complexity. We start with last, which follows directly from Itô’s isometry

\[
\int_t^{t+\Delta} \sigma B_s(u, T) d\tilde{W}^T_r(u) \sim \sqrt{\int_t^{t+\Delta} \sigma^2 B^2_r(u, T) du} \cdot Z_r, \tag{6.57}
\]

with \(Z_r\) an independent (of all random variables) standard normal distributed random variable.

The first integral in (6.56) follows similarly as:

\[
\int_t^{t+\Delta} (\sqrt{1 - \rho^2_{S\nu} \nu(u) + \omega_{S\nu} \sigma B_s(u, T)} \tilde{W}^T_S(u) \sim \sqrt{\int_t^{t+\Delta} \left((1 - \rho^2_{S\nu}) \nu^2(u) + 2 \sqrt{1 - \rho^2_{S\nu} \omega_{S\nu} \sigma B_s(u, T) \nu(u) + \omega^2_{S\nu} \sigma^2 B^2_r(u, T)} \right) du \cdot Z_S, \tag{6.58}
\]

with \(Z_S\) an independent standard normal distributed random variable. Finally the second integral can be obtained from the fact that the pair \(\left(\int_t^{t+\Delta} \sigma B_s(u, T) d\tilde{W}^T_r(u), \int_t^{t+\Delta} d\tilde{W}^T_r(u) \right)\) follows a bivariate normal distribution with correlation \(\rho_{\nu 2}(t, t + \Delta)\) and a conditioning argument

\[
\int_t^{t+\Delta} \sigma B_s(u, T) d\tilde{W}^T_r(u) \sim \sqrt{G(t,t+\Delta)} \left(\rho_{\nu 2}(t, t + \Delta) Z_{\nu 2} + \sqrt{1 - \rho^2_{\nu 2}(t, t + \Delta)} Z_{\nu 2} \right), \tag{6.59}
\]

\[
\rho_{\nu 2}(t, t + \Delta) := \frac{\int_t^{t+\Delta} \sigma B_s(u, T) du}{\sqrt{\Delta \cdot G(t,t+\Delta)}}, \tag{6.60}
\]

with \(Z_{\nu 2}\) an independent standard normal random variable.

Having eliminated all stochastic integrals, we are left with deterministic integrals over \(\sigma B_s(u, T)\), \(\nu(u)\) and powers thereof; for the deterministic integrals over \(\sigma B_s(u, T)\) we use the following
Chapter 6. Monte Carlo Pricing in Schöbel-Zhu-like Models

explicit solutions:

\[
\int_{t}^{t+\Delta} \sigma B_s(u, T)du = \frac{\sigma}{a} \left[\Delta - \frac{1}{a} e^{-a(T-t-\Delta)} + \frac{1}{a} e^{-a(T-t)} \right] =: H(t, t + \Delta),
\]

\[
(6.61)
\]

\[
\int_{t}^{t+\Delta} \sigma^2 B_s^2(u, T)du = \frac{\sigma^2}{a^2} \left[\Delta + \frac{1}{2a} e^{-2a(T-t-\Delta)} - \frac{2}{a} e^{-a(T-t-\Delta)} - \frac{1}{2a} e^{-2a(T-t)} + \frac{2}{a} e^{-a(T-t)} \right],
\]

\[
=: G(t, t + \Delta),
\]

\[
(6.62)
\]

whereas we will approximate all integrals over \(v(u) \) by using the predictor-corrector method:

\[
\int_{t}^{t+\Delta} v^p(u)du \approx \left(\delta_1 v^p(t) + \delta_2 v^p(t + \Delta) \right) \Delta,
\]

\[
(6.63)
\]

for \(p \in \{1, 2\} \) and some constants \(\delta_1, \delta_2 \).

Collecting all terms once again yields an Exponentially Affine in Expectation (EAE) scheme for the SZHW model

\[
y(t + \Delta, T) = y(t, T) + C_0 + C_1 v(t) + C_2 v(t + \Delta) + C_3 v^2(t) + C_4 v^2(t + \Delta) + C_5 z_S + C_6 z_r + C_7 z_{S2} + C_8 z_{S3}
\]

\[
(6.64)
\]

where:

\[
C_0 = -\frac{1}{2} \left[G(t, t + \Delta) + \rho_{S,r} \tau \Delta \right],
\]

\[
C_1 = -\delta_1 \left(\rho_{S,r} H(t, t + \Delta) + \rho_{S,y} \left(\frac{\psi \kappa \Delta}{\tau} - \rho_{r,y} H(t, t + \Delta) \right) \right),
\]

\[
C_2 = -\delta_2 \left(\rho_{S,r} H(t, t + \Delta) + \rho_{S,y} \left(\frac{\psi \kappa \Delta}{\tau} - \rho_{r,y} H(t, t + \Delta) \right) \right),
\]

\[
C_3 = -\frac{1}{2} \delta_1 \Delta + \frac{\rho_{S,y}^2}{\tau} (\delta_1 \kappa \Delta - \frac{1}{2}),
\]

\[
C_4 = -\frac{1}{2} \delta_2 \Delta + \frac{\rho_{S,r}^2}{\tau} \left(\delta_2 \kappa \Delta + \frac{1}{2} \right),
\]

\[
C_5 = \sqrt{C_{50} + C_{51} v(t) + C_{52} v(t + \Delta) + C_{53} v^2(t) + C_{54} v^2(t + \Delta)}.
\]

\[
C_{50} = \omega_{S,r}^2 G(t, t + \Delta),
\]

\[
C_{51} = 2 \delta_1 \omega_{S,r} \sqrt{1 - \rho_{S,y}^2} H(t, t + \Delta),
\]

\[
C_{52} = 2 \delta_2 \omega_{S,r} \sqrt{1 - \rho_{S,y}^2} H(t, t + \Delta),
\]

\[
C_{53} = \delta_1 \Delta \left(1 - \rho_{S,y}^2 \right),
\]

\[
C_{54} = \delta_2 \Delta \left(1 - \rho_{S,y}^2 \right),
\]

\[
C_{55} = \rho_{r,y} \sqrt{G(t, t + \Delta) \rho_{v,y^2}(t, t + \Delta)},
\]

\[
C_{56} = \rho_{r,y} \sqrt{G(t, t + \Delta) \rho_{v,y^2}(t, t + \Delta)},
\]

\[
C_{57} = \rho_{r,y} \sqrt{G(t, t + \Delta) \rho_{v,y^2}(t, t + \Delta)},
\]

\[
C_{58} = \sqrt{1 - \rho_{r,y}^2 - \omega_{S,r}^2 \sqrt{G(t, t + \Delta)}}.
\]

Similar to the SZ scheme (6.22), the above simulation scheme might have a net drift away from
By the tower law of conditional expectations, we have the following equation

\[\mathbb{E}^{\mathbb{Q}^{T}}[\tilde{F}(t + \Delta)|\mathcal{F}_i] = \mathbb{E}^{\mathbb{Q}^{T}}\left\{ \mathbb{E}^{\mathbb{Q}^{T}}\left[\tilde{F}(t + \Delta)|\mathcal{F}_i \vee \sigma(\nu(t + \Delta T)) \right]|\mathcal{F}_i \right\}, \]

(6.65)

with \(\sigma(\nu(t + \Delta T)) \) the sigma-algebra generated by \(\nu(t + \Delta T) \) and where \(\mathcal{F}_i, \sigma(\nu(t + \Delta T)) \) denotes the smallest sigma-algebra containing both \(\mathcal{F}_i \) and \(\sigma(\nu(t + \Delta T)) \). For the martingale condition (6.23) to hold, we hence need \(\tilde{F}(t) \) to equal the latter expectation under the \(T \)-forward measure \(\mathbb{Q}^{T} \). We express the inner expectation completely in terms of \(\nu(t) \) and \(\nu(t + \Delta) \) by exponentiating (6.64), taking the expectation over the independent normal distributions \(Z_5, Z_2 \) and \(Z_r \), and noting from (6.49) that \(Z_r := \frac{\nu(t + \Delta) - \nu(t - \Delta)}{\sqrt{\Delta}} \). We obtain the following expression

\[\mathbb{E}^{\mathbb{Q}^{T}}[\tilde{F}(t + \Delta)|\mathcal{F}_i, \nu(T)] = \tilde{F}(t) \exp\left\{ D_0 + D_1 \nu(t) + D_2 \nu(t + \Delta) + D_3 \nu^2(t) + D_4 \nu^2(t + \Delta) \right\} \]

(6.66)

where

\[
\begin{align*}
D_0 &:= C_6^* + \frac{1}{2} C_8^* + \frac{1}{2} C_9^* + \frac{1}{2} C_{50} - C_6 \frac{K_2}{K_3}, & D_1 &:= C_1 + \frac{1}{2} C_{51} - C_6 \frac{K_1}{K_3}, \\
D_2 &:= C_2 + \frac{1}{2} C_{52} + \frac{1}{2} C_6, & D_3 &:= C_3 + \frac{1}{2} C_{53}, & D_4 &:= C_4 + \frac{1}{2} C_{54}.
\end{align*}
\]

(6.67)

Once again, due to the EAE property of our scheme, this term is exponentially affine. By substituting (6.66) in (6.65), we find that the following condition has to be satisfied for the martingale condition to hold:

\[1 = \mathbb{E}^{\mathbb{Q}^{T}}\left\{ \exp\left\{ D_0 + D_1 \nu(t) + D_2 \nu(t + \Delta) + D_3 \nu^2(t) + D_4 \nu^2(t + \Delta) \right\}|\mathcal{F}_i \right\}. \]

(6.68)

Taking the \(\mathcal{F}_i \) measurable terms out of the expectation and collecting terms, we obtain

\[
1 = \exp\left\{ D_0 + D_1 \nu(t) + D_3 \nu^2(t) \right\} \mathbb{E}^{\mathbb{Q}^{T}}\left\{ \exp\left\{ D_2 \nu(t + \Delta) + D_4 \nu^2(t + \Delta) \right\}|\mathcal{F}_i \right\} = \exp\left\{ D_0 + D_1 \nu(t) + D_3 \nu^2(t) \right\} \Psi_H(1) \]

(6.69)
where $\Psi_H(t)$ denotes the moment-generating function of the (discretized) process

$$H := D_2 \nu(t + \Delta) + D_4 \nu^2(t + \Delta), \quad (6.70)$$
evaluated in the point t. Hence expanding D_0, we have that for the martingale condition to hold we need

$$1 = \exp\left[C_0^* + \frac{1}{2} C^2_8 + \frac{1}{2} C^2_7 + \frac{1}{2} C_{50} - C_6 \frac{K_2}{K_3} + D_1 \nu(t) + D_3 \nu^2(t) \right] \Psi_H(1) \quad (6.71)$$

which (assuming the regularity condition $\Psi_H(1) < \infty$ is satisfied) can be established by setting

$$C_0^* := -\frac{1}{2} C^2_8 - \frac{1}{2} C^2_7 - \frac{1}{2} C_{50} + C_6 \frac{K_2}{K_3} - D_1 \nu(t) - D_3 \nu^2(t) - \ln \left(\Psi_H(1) \right). \quad (6.72)$$

As $\nu(t + \Delta)$ is still Gaussian under Q^T, $\Psi_H(1)$ and its regularity can be determined in a similar fashion to Section 6.4.1. The following proposition applies the above result to the martingale correction and the regularity of the simulation scheme (6.64).

Proposition 6.5.1 The regularity of the simulation scheme (6.64) holds if and only if the regularity condition (6.34) is satisfied. Given that this condition is satisfied, we can ensure the martingale property in the SZHW-scheme of (6.64) by replacing the constant C_0 by

$$C_0^* = E_0 + E_1 \nu(t) + E_2 \nu^2(t), \quad (6.73)$$

where:

$$E_0 := \frac{1}{2} \ln \left(1 - 2D_4 K_3^2 \right) - \frac{D_4 \left(\frac{K_2}{D_3} \right)^2}{1 - 2D_4 K_3^2} - \frac{1}{2} C_{50} + C_6 \frac{K_2}{K_3} - \frac{1}{2} C^2_8 - \frac{1}{2} C^2_7 + \frac{D^2_2}{4D_4}, \quad (6.74)$$

$$E_1 := -D_1 - \frac{2D_4 K_1 \left(\frac{K_2}{D_3} \right)}{1 - 2D_4 K_3^2}, \quad E_2 := -D_3 - \frac{D_4 K_1^2}{1 - 2D_4 K_3^2}, \quad (6.75)$$

with K_1, K_2, K_3 as defined in (6.49), (6.50) and D_1, \ldots, D_4 in (6.67).

Proof Follows directly from the above results.

6.6 Numerical results

Any simulation scheme has to be tested, as they say the proof of the pudding is in the eating. In this section our goal is to test our proposed simulation schemes and compare them to alternate schemes. In our comparisons we focus on the bias of European call prices, where by bias we mean $\mathbb{E}[\tilde{\alpha}] - \alpha$, where α is the true price of the European call and $\tilde{\alpha}$ is its Monte Carlo estimator. It is of high importance for practitioners to have a bias as small as possible for reasonable sizes of the time step. Ideally one would like to be able to simulate the relevant quantities only at those points in time which are relevant to the option contract that is being priced. Unfortunately,
6.6. Numerical results

that is not always possible as has certainly become clear from several papers on the simulation
of the Heston model, e.g. see Lord et al. (2008) or van Haastrecht and Pelsser (2010).

Table 1 contains the parameter configurations for our tests cases. Section 6.6.1 deals with the
simulation scheme for the special case of the SZ model that collapses to a Heston model, see
Section 6.3. Volatilities for Case I are similar to those in the equity market at the time of writing.
In this test case we not only compare our scheme to an Euler scheme, but also to the best-
performing scheme considered in Andersen (2008), the QE-M scheme. Finally, we also compare
to a recently proposed scheme for the Heston model in Zhu (2008). In Case II we consider
a setting of the SZ model which does not collapse to the Heston model. Here, the volatilities
correspond to levels seen at the end of 2008 and beginning of 2009. Finally, we also test the
scheme which was proposed in Section 6.5 for the SZHW model: case III deals with normal,
perhaps slightly excited, long-term market volatilities.

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>κ</th>
<th>τ</th>
<th>ν(0)</th>
<th>θ</th>
<th>ρνσr</th>
<th>r</th>
<th>a</th>
<th>σ</th>
<th>ρσr</th>
<th>ρνr</th>
</tr>
</thead>
<tbody>
<tr>
<td>case I</td>
<td>Call-5Y</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.6</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>case II</td>
<td>Call-10Y</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.9</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>case III</td>
<td>Call-15Y</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.7</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 1: Test cases for the Schöbel-Zhu/Heston, Schöbel-Zhu, and Schöbel-Zhu-Hull-White simulation
scheme, in all cases \(S(0) = 100 \).

All numerical examples are based on a million simulation paths, where we used the stock price
as a control variate and the Mersenne Twister to generate pseudo-random uniform numbers.

6.6.1 Results for the Heston/Schöbel-Zhu model

Starting with Case I, in which we consider a special case of the SZ model which corresponds to
the Heston model, we can not only compare our Exponential Affine scheme (denoted by EAE)
to a simple Euler scheme, but we can of course also compare it to the best-performing scheme
of Andersen (2008), the QE-M scheme. Whereas our EAE scheme samples from the exact
distributions of \(ν(t) \) and \(ν^2(t) \), Andersen’s QE scheme uses:

- a Quadratic Gaussian distribution when \(\text{Var}[ν^2(t + Δ)] / \text{E}[ν^2(t + Δ)] ≤ 1.5 \),
- a mixture of zero and an exponential function, otherwise.

Our scheme and the QE-M scheme therefore differ for low values of \(ν(t) \), to be precise when:

\[
ν^2(t) ∈ \left[0, \frac{(e^{κΔ} - 1)τ^2}{4κ} \right].
\]

Finally, we also compare to Zhu (2008) scheme. In this scheme, the SDE for the square root of
the stochastic variance is derived. As the square root is not differentiable in zero, Itô’s lemma is
incorrectly applied here, e.g. see Kahl and Jäckel (2006) or Lord et al. (2008). Luckily, Zhu’s best-performing method, a moment-matching method, does not depend too much on this premise. The numerical examples in his paper suggest that this method is comparable to Andersen’s QE scheme for low values of the volatility of variance parameter, but is outperformed for realistic levels of the volatility of variance parameter.

<table>
<thead>
<tr>
<th>Δ</th>
<th>Euler</th>
<th>Zhu</th>
<th>QE-M</th>
<th>EAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.914 (±0.062)</td>
<td>0.479 (±0.075)</td>
<td>-0.059 (±0.057)</td>
<td>-0.130 (±0.057)</td>
</tr>
<tr>
<td>1/2</td>
<td>-0.781 (±0.060)</td>
<td>0.291 (±0.064)</td>
<td>-0.023 (±0.057)</td>
<td>-0.020 (±0.057)</td>
</tr>
<tr>
<td>1/4</td>
<td>-0.348 (±0.058)</td>
<td>0.106 (±0.060)</td>
<td>0.013 (±0.057)</td>
<td>-0.039 (±0.057)</td>
</tr>
<tr>
<td>1/8</td>
<td>-0.136 (±0.058)</td>
<td>0.049 (±0.059)</td>
<td>0.024 (±0.057)</td>
<td>-0.003 (±0.057)</td>
</tr>
<tr>
<td>1/16</td>
<td>0.002 (±0.058)</td>
<td>0.041 (±0.058)</td>
<td>-0.008 (±0.057)</td>
<td>0.013 (±0.057)</td>
</tr>
<tr>
<td>1/32</td>
<td>-0.015 (±0.057)</td>
<td>0.037 (±0.057)</td>
<td>-0.015 (±0.057)</td>
<td>-0.010 (±0.057)</td>
</tr>
<tr>
<td>$K = 140$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.058 (±0.074)</td>
<td>3.537 (±0.099)</td>
<td>-0.524 (±0.066)</td>
<td>-0.354 (±0.066)</td>
</tr>
<tr>
<td>1/2</td>
<td>0.226 (±0.071)</td>
<td>2.068 (±0.078)</td>
<td>-0.147 (±0.066)</td>
<td>-0.080 (±0.066)</td>
</tr>
<tr>
<td>1/4</td>
<td>0.160 (±0.068)</td>
<td>1.049 (±0.071)</td>
<td>-0.006 (±0.067)</td>
<td>-0.051 (±0.066)</td>
</tr>
<tr>
<td>1/8</td>
<td>0.137 (±0.067)</td>
<td>0.503 (±0.068)</td>
<td>0.020 (±0.066)</td>
<td>-0.012 (±0.066)</td>
</tr>
<tr>
<td>1/16</td>
<td>0.138 (±0.067)</td>
<td>0.251 (±0.067)</td>
<td>-0.016 (±0.066)</td>
<td>0.003 (±0.066)</td>
</tr>
<tr>
<td>1/32</td>
<td>0.053 (±0.066)</td>
<td>0.138 (±0.066)</td>
<td>-0.038 (±0.066)</td>
<td>-0.015 (±0.066)</td>
</tr>
<tr>
<td>$K = 60$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.707 (±0.036)</td>
<td>-0.991 (±0.041)</td>
<td>0.066 (±0.036)</td>
<td>-0.005 (±0.036)</td>
</tr>
<tr>
<td>1/2</td>
<td>-0.793 (±0.037)</td>
<td>-0.541 (±0.038)</td>
<td>0.022 (±0.036)</td>
<td>0.004 (±0.036)</td>
</tr>
<tr>
<td>1/4</td>
<td>-0.381 (±0.037)</td>
<td>-0.254 (±0.037)</td>
<td>0.004 (±0.037)</td>
<td>-0.017 (±0.036)</td>
</tr>
<tr>
<td>1/8</td>
<td>-0.170 (±0.037)</td>
<td>-0.114 (±0.037)</td>
<td>0.013 (±0.037)</td>
<td>0.003 (±0.037)</td>
</tr>
<tr>
<td>1/16</td>
<td>-0.044 (±0.037)</td>
<td>-0.034 (±0.037)</td>
<td>0.005 (±0.037)</td>
<td>0.004 (±0.036)</td>
</tr>
<tr>
<td>1/32</td>
<td>-0.024 (±0.037)</td>
<td>-0.004 (±0.037)</td>
<td>0.003 (±0.037)</td>
<td>-0.001 (±0.036)</td>
</tr>
</tbody>
</table>

Table 2: Estimated call option prices biases for case I. Numbers in parentheses are the widths of the confidence interval at a 99% confidence level: we starred the biases that were not significantly different from zero. Exact prices respectively are 27.90, 14.23 and 50.34.

In Table 2, we have displayed estimated call option price biases for Case I, as a function of the strike level ($K = 60, 100$ or 140) and the time step Δ (1 through 1/32). Numbers in parentheses are the widths of the confidence interval at a 99% confidence level: we starred the biases that were not significantly different from zero. From the results it is clear that - at least for this parameter configuration - Zhu’s method is better than a simple Euler discretization for lower strikes, though for higher strikes the Euler scheme wins. The QE-M and EAE methods however are much better in terms of bias. Both methods are too close to tell apart.

As one eventually wants to judge a scheme based on its efficiency, one should look its accuracy in combination with the computational effort of the methods. To this end we also report the computational times for the four simulation methods which are provided in Table 3 below.
6.6. Numerical results

<table>
<thead>
<tr>
<th>Δ</th>
<th>Euler</th>
<th>Zhu</th>
<th>QE-M</th>
<th>EAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>1/2</td>
<td>1.8</td>
<td>2.0</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>1/4</td>
<td>3.6</td>
<td>4.0</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>1/8</td>
<td>7.0</td>
<td>7.9</td>
<td>10.2</td>
<td>8.6</td>
</tr>
<tr>
<td>1/16</td>
<td>13.9</td>
<td>15.7</td>
<td>20.8</td>
<td>17.1</td>
</tr>
<tr>
<td>1/32</td>
<td>28.1</td>
<td>31.3</td>
<td>41.9</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Table 3: Computational times in seconds for case I for the Euler, Zhu, QE-M and EAE scheme, all with one million sample paths.

From Table 3 we can see the Euler scheme takes the least time to compute, followed by Zhu’s method, the EAE scheme and the QE-M scheme. Still, the efficiency of the QE-M scheme and the EAE method by far outperforms those of the Euler and Zhu’s method as can be seen if we take a look at the accuracy of the methods in Table 2. From that table, we can see that the EAE and QE-M only need 2 or 4 time steps a year to produce of scheme with no significant bias, whereas the Euler and Zhu’s scheme in most cases need at least 16 time steps a year to produce a scheme negligible bias. Though the QE-M scheme and the EAE method produce a similar accuracy, the EAE method is more efficient. This can be explained to the fact that the exact Gaussian volatility distribution of the Schöbel and Zhu (1999) model is explicitly utilized in the EAE method, whereas the variance simulation of QE-M method is tailored for Heston (1993) model.

6.6.2 Results for the Schöbel-Zhu and Schöbel-Zhu-Hull-White model

We move on to Case II and III, which are slightly more benign due to a non-zero value of ψ^1 in Case II and the inclusion of stochastic interest rates for Case III. The numerical results for these cases can be found in Table 4 and 5. Computational times for both cases behave very similar to those reported in Table 3 and are hence omitted.

In Case II, a non-Heston SZ model, the differences between the Euler and EAE methods are indeed closer, though still noticeably in favour of the EAE method. From Table 5 we can see that especially for in-and out-of-the-money options, the EAE scheme significantly outperforms the Euler scheme.

Finally, we take a look at the performance of the simulation schemes for the SZHW model, where in addition to the SZ model we have stochastic interest rates which are correlated with both the underlying and the stochastic volatility process. While the addition of stochastic interest rates complicates the scheme slightly, the picture is similar to before as can be seen from Table 6. Again the EAE method produces a much smaller discretization error than the Euler scheme, allowing the user to utilise bigger time steps instead of the smaller ones one would be confined to when using the Euler method. For example, for the strikes considered one could safely use a

1This makes the distribution less fat-tailed.
timestep of a quarter of a year for the EAE method, and have a bias which is not significantly different from zero. In the Euler method, this is only achieved with a timestep equal to 1/16.

<table>
<thead>
<tr>
<th>Δ</th>
<th>$K = 100$</th>
<th>$K = 140$</th>
<th>$K = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.828 ± 0.059</td>
<td>-0.389 ± 0.050</td>
<td>-0.495 ± 0.080</td>
</tr>
<tr>
<td>1/2</td>
<td>-0.314 ± 0.055</td>
<td>-0.165 ± 0.050</td>
<td>-0.110 ± 0.072</td>
</tr>
<tr>
<td>1/4</td>
<td>-0.145 ± 0.052</td>
<td>-0.034* ± 0.050</td>
<td>-0.032* ± 0.068</td>
</tr>
<tr>
<td>1/8</td>
<td>-0.068 ± 0.051</td>
<td>0.014* ± 0.050</td>
<td>0.003* ± 0.064</td>
</tr>
<tr>
<td>1/16</td>
<td>-0.043* ± 0.051</td>
<td>0.005* ± 0.050</td>
<td>0.034* ± 0.065</td>
</tr>
<tr>
<td>1/32</td>
<td>0.017* ± 0.050</td>
<td>0.003* ± 0.050</td>
<td>0.034* ± 0.065</td>
</tr>
</tbody>
</table>

Table 4: Results for case II, exact prices: 56.77, 45.34 and 70.89.

Table 5: Results for case III, exact prices: 53.75, 40.69 and 69.97.

Estimated call option prices biases for case II and III. Numbers in parentheses are the widths of the confidence interval at a 99% confidence level: we starred the biases that were not significantly different from zero.

Finally, we take a look at the performance of the simulation schemes for the SZHW model, where in addition to the SZ model we have stochastic interest rates which are correlated with both the underlying and the stochastic volatility process. While the addition of stochastic interest rates complicates the scheme slightly, the picture is similar to before as can be seen from Table 5. Again the EAE method produces a much smaller discretization error than the Euler scheme, allowing the user to utilize bigger time steps instead of the smaller ones one would be confined to when using the Euler method.
6.7. Conclusion

A major problem signaled with Euler schemes in the simulation of stochastic volatility models is their inability to generate the proper correlation between the increments of the asset and the stochastic volatility processes. As the correlation parameter in the stochastic volatility models is an important determinant of the skew in implied volatilities, not being able to match this parameter leads to a significant mispricing of options with strikes far away from the at-the-money level. In the Heston (1993) model, this so-called “leaking correlation” problem, is partially caused by the fact that an Euler discretization tries to approximate a square root process, by a Gaussian process. However even when the stochastic volatility itself is Gaussian, such as in Schöbel and Zhu (1999)-like models, we have shown that the problem of “leaking correlation” is still an issue. In this chapter we have proposed simulation algorithms for the SZ model and its extensions. By analyzing the lessons learned on how to avoid the so-called leaking correlation phenomenon in the simulation of the Heston (1993) model, we formulated a simulation scheme for the SZ model which is tailored to match the correlation between the increments of the asset price and the variance processes of the continuous-time dynamics. A simulation scheme for the Schöbel-Zhu-Hull-White model considered in Chapter 3, which incorporates the need for stochastic interest rates, was derived as well. This is closely related to the recent advances in the development of markets for long-term derivatives, for which maturities the inclusion of stochastic interest rates in a derivatives pricing model is more appropriate.

All introduced schemes have carefully been chosen to be Exponentially Affine in Expectation (EAE), which greatly facilitates the derivation of a martingale correction. The regularity of both schemes has also been studied. Finally, we numerically compared the new simulation schemes to other recent schemes in the literature. For a special case of the SZ model which coincides with the Heston model, our proposed scheme has a similar performance to the QE-M scheme of Andersen (2008), whilst being slightly more efficient in terms of computational time required. For all non-Heston SZ and the SZHW model, it has been demonstrated that our scheme consistently outperforms the Euler scheme. These results affirm that Andersen’s result is more widely applicable than to the Heston model alone; for the simulation of stochastic volatility models, it is of great importance to match the correlation between the asset price and its stochastic volatility process.