Fixed-point logics on trees
Gheerbrant, A.P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 5

Complete Axiomatization of the Stutter-Invariant Fragment of the Linear Time μ-Calculus

5.1 Introduction

In the previous chapter, we encountered the phenomenon of stutter-invariance, which is a property that is argued by some authors (see [101]) to be natural and desirable for a temporal logic, especially in the context of concurrent systems. Let us recall that, roughly, a temporal logic is stutter-invariant if it cannot detect the addition of identical copies of a state. The stutter-invariant fragment of linear-time temporal logic LTL is known to be its “Until”-only fragment $\text{LTL}(U)$ and is obtained by disallowing the use of the “Next” operator (see [116]). It has been extensively studied and it is widely used as a specification language. Nevertheless, it has been pointed out (see in particular [61]) that $\text{LTL}(U)$ fails to characterize the class of stutter-invariant ω-regular languages. In order to extend the expressive power of this framework, while retaining stutter-invariance, some ways of extending it have been proposed. In [61], Kousha Etessami proposed for instance the logic SI-QLTL, which extends $\text{LTL}(U)$ by means of a certain restricted type of quantification over proposition letters. He showed that SI-QLTL characterizes exactly stutter-invariant ω-regularlanguages.

In this chapter, we will focus on $\mu\text{TL}(U)$, which we defined as the fixpoint extension of the “Until”-only fragment of linear-time temporal logic. In the previous chapter we showed that $\mu\text{TL}(U)$ has exactly the same expressive power as SI-QLTL, which implies that it also characterizes exactly stutter-invariant ω-regular languages. We also showed that it satisfies uniform interpolation, which is a sign that $\mu\text{TL}(U)$ is a well-behaved logic. Additionally, it is known that $\text{LTL}(U)$ is PSPACE complete both for model checking and for satisfiability (c.f. [53]). It is also know that μTL is PSPACE complete both for model checking and for satisfiability (c.f. [130]). So PSPACE completeness follows for $\mu\text{TL}(U)$ in both
cases. This is another argument in favor of $\mu TL(U)$: while much more expressive than LTL(U), it has the same complexity. Here we further contribute to the study of the logical properties of $\mu TL(U)$ by completely axiomatizing it over the class of ω-words and over the class of finite words. We introduce for this end another logic, which we call $\mu TL(\Diamond_\Gamma)$, and which is a variation of μTL where the Next time operator is replaced by the family of its stutter-invariant counterparts. We use this logic as a technical tool to show completeness results for $\mu TL(U)$.

Outline of the chapter: In Section 5.2, we recall basic facts and notions about linear-time μ-calculus μTL. We also give a precise definition of the notion of stutter-invariance and introduce $\mu TL(U)$, the stutter-invariant fragment of μTL. In Section 5.3, we introduce the logic $\mu TL(\Diamond_\Gamma)$ and show that $\mu TL(U)$ and $\mu TL(\Diamond_\Gamma)$ have exactly the same expressive power on finite and ω-words. In section 5.4, we give axiomatizations of $\mu TL(\Diamond_\Gamma)$ that we respectively show to be complete on these two classes of structures. Finally, these results are put to use in Section 5.5, where we show similar completeness results for $\mu TL(U)$.

5.2 Preliminaries

In this section, we recall the syntax and semantics of linear time μ-calculus μTL. We also recall its axiomatization on some interesting classes of linear orders, as well as the notion of stutter-invariance.

5.2.1 Linear Time μ-Calculus

By a propositional vocabulary we mean a countable (possibly finite) non-empty set of propositional letters $\sigma = \{ p_i \mid i \in I \}$.

Definition 5.2.1 (Syntax of μTL). Let σ be a propositional vocabulary and $\mathcal{V} = \{ x_1, x_2, \ldots \}$ a disjoint countably infinite set of propositional variables. We inductively define the set of μTL-formulas in vocabulary σ as follows:

$$\varphi, \psi, \xi := \text{At} \mid T \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond \varphi \mid \mu x_i \xi$$

where $\text{At} \in \sigma \cup \mathcal{V}$ and, in the last clause, x_i occurs only positively in ξ (i.e., within the scope of an even number of negations). We will use $\varphi \rightarrow \psi$, $\nu x_i \xi$, $\Box \varphi$, $\varphi^U \psi$, $F \varphi$ as shorthand for, respectively, $\neg (\varphi \land \neg \psi)$, $\neg \mu x_i \neg \xi (\neg x_i)$, $\neg \Diamond \neg \varphi$, $\mu y. (\psi \lor (\varphi \land \Diamond y))$ and $\mu y. (\varphi \lor \Diamond y)$. We will also use $G \varphi$ as shorthand for $\neg F \neg \varphi$.

A linear flow of time is a structure $\mathcal{L} = (W, <)$, where W is a non-empty set of points and $<$ is a linear order on W. A linear time σ-structure is a structure $\mathfrak{M} = (\mathcal{L}, V)$ where $\mathcal{L} = (W, R)$ is a linear flow of time and $V : \sigma \rightarrow \wp(W)$ a valuation. Whenever $w \in W$ is a point, we call \mathfrak{M}, w a pointed σ-structure. Linear time μ-calculus is usually considered over restricted classes of linear orders. In this paper, we will only consider it over the following classes:
• \(L_\omega\), the class of linear orders of order type \(\omega\), i.e., flows of time \((W, <)\) that are isomorphic to \((\mathbb{N}, <)\), where \(\mathbb{N}\) is the set of natural numbers with the natural ordering,

• \(L_{\text{fin}}\), the class of finite linear orders,

• the union \(L_\omega \cup L_{\text{fin}}\) of these two classes

We will often refer to structures based on \(L_\omega\) as \(\omega\)-words or \(L_\omega\)-structures, to structures based on \(L_{\text{fin}}\) as \textit{finite words} or \(L_{\text{fin}}\)-structures and more generally, to structures based on \(L\) as \(L\)-structures.

Definition 5.2.2 (Semantics of \(\mu\text{TL}\)). Given a \(\mu\text{TL}\)-formula \(\varphi\), a structure \(M = ((W, <), V)\) and an assignment \(g : V \rightarrow \varphi(W)\), we define a subset \([\varphi]_{M,g}\) of \(M\) that is interpreted as the set of points at which \(\varphi\) is true. This subset is defined by induction in the usual way. Let \(\text{ImSuc}(w)\), be the set of direct successors of the point \(w\) with respect to \(<\), we only recall:

\[
[\square \varphi]_{M,g} = \{ w \in W : [\varphi]_{M,g} \cap \text{ImSuc}(w) \neq \emptyset \}
\]

\[
[\nu x. \varphi]_{M,g} = \bigcap \{ A \subseteq W : [\varphi]_{M,g[x/A]} \subseteq A \}
\]

where \(g[x/A]\) is the assignment defined by \(g[x/A](x) = A\) and \(g[x/A](y) = g(y)\) for all \(y \neq x\). If \(w \in [\varphi]_{M,g}\), we write \(M, w \models_g \varphi\) and we say that \(\varphi\) is true at \(w \in M\) under the assignment \(g\). If \(\varphi\) is a sentence, or if \(M, w \models_g \varphi\) holds for every valuation \(g\), we simply write \(M, w \models \varphi\).

Note that the \(\diamond\) operator is interpreted as the “Next” operator of temporal logic and that the temporal operators \(U\) and \(F\) that we defined as shorthand have their usual meaning that we recall here:

• \((L, V, w) \models_g F\varphi\) iff there exists \(w'\) such that \(w \leq w'\) and \((L, V, w') \models_g \varphi\)

• \((L, V, w) \models_g \varphi U \psi\) iff there exists \(w'\) such that \(w \leq w'\), \((L, V, w') \models_g \psi\) and for all \(w''\) such that \(w \leq w'' < w'\), \((L, V, w'') \models_g \varphi\)

Before we give the complete axiomatization of \(\mu\text{TL}\) on \(L_\omega\), \(L_{\text{fin}}\) and \(L_\omega \cup L_{\text{fin}}\), let us first recall the axiomatization of the \(\mu\text{-calculus}\). In the \(\mu\text{-calculus}\), instead of considering a linear order \(<\), we consider an arbitrary binary relation \(R\) on \(W\). In this more general context, \((W, R)\) can be an arbitrary graph and we call it a \textit{frame}.\(^1\) The corresponding structures are called \textit{Kripke structures}. Let \(\text{RSuc}(w) = \{ w' : (w, w') \in R \}\), the semantics of \(\diamond\) is now as follows:

\[
[\diamond \varphi]_{M,g} = \{ w \in W : [\varphi]_{M,g} \cap \text{RSuc}(w) \neq \emptyset \}
\]

\(^1\)Note that on arbitrary graphs, we do not introduce \(F\varphi\), \(G\varphi\) and \(\varphi U \psi\) as shorthands for \(\mu\text{TL}\)-formulas anymore: as we consider frames instead of linear flows of time, this would not really map the usual meaning of these temporal operators.
Definition 5.2.3. Let σ be a finite propositional vocabulary and $\varphi, \psi \in \mu\text{TL}$ arbitrary formulas. We call $\text{BV}(\varphi)$ and $\text{FV}(\varphi)$ respectively, the set of bound variables in φ and the set of free variables in φ. The Kozen system K_μ consists of the Modus Ponens, the Substitution rule, the Necessitation rule and the following axioms and rules:

- **A1** propositional tautologies,
- **A2** $\vdash \Box \varphi \leftrightarrow \neg \Diamond \neg \varphi$ (dual),
- **A3** $\vdash \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ (K),
- **A4** $\vdash \varphi[x/\mu x.\varphi] \rightarrow \mu x.\varphi$ (fixpoint axiom),
- **FR** If $\vdash \varphi[x/\psi] \rightarrow \psi$, then $\vdash \mu x.\varphi \rightarrow \psi$ (fixpoint rule)

where x does not belong to $\text{BV}(\varphi)$ and $\text{FV}(\psi) \cap \text{BV}(\varphi) = \emptyset$.

Theorem 5.2.4. If φ is a μTL-formula, let $K_\mu + \varphi$ be the smallest set which contains both K_μ and φ and is closed for the Modus Ponens, Substitution, fixpoint and Necessitation rules. The following holds:

1. K_μ is complete with respect to the class of Kripke structures.
2. $K_\mu + \Diamond \varphi \leftrightarrow \Box \varphi$ is complete with respect to the class of ω-words.
3. $K_\mu + \Diamond \varphi \rightarrow \Box \varphi + \mu x.\Box x$ is complete with respect to the class of finite words.
4. $K_\mu + \Diamond \varphi \rightarrow \Box \varphi$ is complete with respect to the class of finite and ω-words.

Proof. (i) was shown in [133] and the three other completeness results might actually be derivable from it. But direct (and simpler) proofs for (ii) and (iii) can be found respectively in [92] and [40]. In order to establish (iv), we will rely on (i), (ii) and (iii), using an argument from Johan van Benthem and Balder ten Cate (private communication). We first show the following claim:

- **Claim:** Let K_x be a system extending K_μ with a finite set of axioms and closed under Substitution, Modus Ponens and the fixpoint and Necessitation rules. Let θ be a closed formula with $K_x \vdash \theta \rightarrow \Box \theta$. For all formulas ξ, if $K_x + \theta \vdash \xi$, then $K_x \vdash \theta \rightarrow \xi$.

The proof goes by induction on the length of K_x-derivations. The only difficult case is whenever the last line in the proof is obtained via the application of the fixpoint rule. So assume the property holds for all derivations of length n and $K_x + \theta \vdash \mu y.\varphi \rightarrow \psi$ is the last line of a derivation of length $n + 1$. We want to show that $K_x \vdash \theta \rightarrow (\mu y.\varphi \rightarrow \psi)$.

By induction hypothesis, $K_x \vdash \theta \rightarrow (\varphi[x/\psi] \rightarrow \psi)$. So by propositional tautologies also $K_x \vdash (\theta \land \varphi[\psi/x]) \rightarrow \psi$. By the fixpoint rule, $K_x \vdash \mu x. (\theta \land \varphi) \rightarrow \psi$. Now from $K_x \vdash \theta \rightarrow \square \theta$ it follows by propositional tautologies that $K_x \vdash (\diamond \neg \theta \lor \neg \theta) \rightarrow \neg \theta$ and by the fixpoint rule $K_x \vdash \mu x. (\neg \theta \lor \diamond x) \rightarrow \neg \theta$, so $K_x \vdash \theta \rightarrow \neg \mu x. (\neg \theta \lor \diamond x)$. Now it is valid in the μ-calculus that $\neg \mu x. (\neg \theta \lor \diamond x) \rightarrow (\mu x. (\theta \land \varphi) \leftrightarrow \mu x. \varphi)$, so it is also derivable in K_x. It follows that $K_x \vdash \theta \rightarrow (\mu x. \varphi \rightarrow \psi)$.

Now assume that ξ is valid on finite and ω-words. As it is valid on finite words, by (iii), $K_\mu + \diamond \varphi \rightarrow \square \varphi + \mu x. \square x \vdash \xi$. As $\mu x. \square x$ satisfies the condition of the claim we get:

(a) $K_\mu + \diamond \varphi \rightarrow \square \varphi \vdash \mu x. \square x \rightarrow \xi$

ξ is also valid on ω-words, and hence by (ii), $K_\mu + \diamond \varphi \rightarrow \square \varphi + \square \varphi \rightarrow \diamond \varphi \vdash \xi$. Note that $\diamond \top$ can equivalently be substituted for $\square \varphi \rightarrow \diamond \varphi$ there. As $K_\mu + \diamond \varphi \rightarrow \square \varphi \vdash \neg \mu x. \square x \rightarrow \top$, we can also take θ to be $\neg \mu x. \square x$, which also satisfies the condition of the claim. Indeed by the $\diamond \varphi \rightarrow \square \varphi$ axiom, it is enough to prove $\neg \mu x. \square x \rightarrow \diamond \neg \mu x. \square x$. But this is equivalent to $\neg \mu x. \square x \rightarrow \mu x. \square x$, which is derivable in K_μ (since $\mu x. \square x \leftrightarrow (\mu x. \square x)$). It follows that:

(b) $K_\mu + \diamond \varphi \rightarrow \square \varphi \vdash \neg (\mu x. \square x) \rightarrow \xi$ $K_\mu + \diamond \varphi \rightarrow \square \varphi \vdash \xi$ follows from (a) and (b), which proves (iv).

5.2.2 Stutter-Invariance

We will now recall the syntax and semantics of $\mu TL(U)$. We also recall our definition of stutter-invariance and recall that, in terms of expressive power, $\mu TL(U)$ is exactly the stutter-invariant fragment of μTL.

Definition 5.2.5 (Syntax of $\mu TL(U)$). Let σ be a propositional vocabulary, and let $V = \{x_1, x_2, \ldots \}$ be a disjoint countably infinite set of propositional variables. We inductively define the set of $\mu TL(U)$-formulas in vocabulary σ as follows:

$$
\varphi, \psi, \xi := A t \mid \top \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi U \psi \mid \mu x_i \xi
$$

where $At \in \sigma \cup V$ and, in the last clause, x_i occurs only positively in ξ (i.e., within the scope of an even number of negations). We will use $\varphi \rightarrow \psi$, $\nu x_i \xi$, $F \varphi$ and $G \varphi$ as shorthand for, respectively, $\neg (\varphi \land \neg \psi)$, $\neg \mu x_i \neg \xi (\neg x_i)$, $\top U \varphi$ and $\neg (\top U \neg \varphi)$.

Note that the temporal operators F and G defined as shorthand have their usual meaning. We interpret $\mu TL(U)$-formulas in the same type of structures as μTL-formulas, i.e., structures of the form $\mathcal{M} = (\mathcal{L}, V)$ where $\mathcal{L} \in \mathcal{L}_{\text{fin}} \cup \mathcal{L}_\omega$.

Definition 5.2.6 (Semantics of $\mu TL(U)$). Given a $\mu TL(U)$-formula φ, a structure $\mathfrak{M} = ((W, <), V)$ and an assignment $g : V \to \varphi(W)$, we define a subset $[\varphi]_{\mathfrak{M}, g}$ of \mathfrak{M} that is interpreted as the set of points at which φ is true. This subset is defined by induction in the usual way. We only recall:

$$[\varphi \cup \psi]_{\mathfrak{M}, g} = \{ w \in W : \exists w' \geq w, w' \in [\varphi]_{\mathfrak{M}, g} \text{ and } \forall w \leq w'', w'' \in [\varphi]_{\mathfrak{M}, g} \}$$

$$[\mu x. \varphi]_{\mathfrak{M}, g} = \bigcap \{ A \subseteq W : [\varphi]_{\mathfrak{M}, g|x/A} \subseteq A \}$$

where $g[x/A]$ is the assignment defined by $g[x/A](x) = A$ and $g[x/A](y) = g(y)$ for all $y \neq x$.

In the remaining, we always assume $L \in \{ L_\omega, L_{\text{fin}}, L_{\text{fin}} \cup L_\omega \}$.

Definition 5.2.7 (Stuttering). Let σ be a propositional signature, and $\mathfrak{M} = ((W, <), V, w)$, $\mathfrak{M}' = ((W', <), V', w')$ pointed L-structures in vocabulary σ. We say that \mathfrak{M}' is a stuttering of \mathfrak{M} if and only if there is a surjective function $s : W' \to W$ such that

1. $s(w') = w$
2. for every $w_i, w_j \in W'$, $w_i < w_j$ implies $s(w_i) \leq s(w_j)$
3. for every $w_i \in W'$ and $p \in \sigma, w_i \in V'(p)$ iff $s(w_i) \in V(p)$

We say that an L-structure \mathfrak{M} is stutter-free relative to L whenever for all \mathfrak{M}' such that \mathfrak{M} is a stuttering of \mathfrak{M}', \mathfrak{M}' is isomorphic to \mathfrak{M}.

Let for instance \mathfrak{M}, w be an ω-word in vocabulary $\{ p \}$ with $V(p) = W$. \mathfrak{M}, w is stutter-free relative to L_ω, but it is not stutter-free relative to $L_{\text{fin}} \cup L_\omega$. Indeed, let \mathfrak{M}', w' be a finite word in vocabulary $\{ p \}$ containing one single point w'. Assume $V'(p) = \{ w' \}$, then \mathfrak{M}, w is a stuttering of \mathfrak{M}', w' and relative to $L_{\text{fin}} \cup L_\omega$, \mathfrak{M}', w' is stutter-free, while \mathfrak{M}, w is not.

Definition 5.2.8 (Stutter-Invariant Class of Structures). Let σ be a propositional signature and K a class of L-structures in vocabulary σ. Then K is a stutter-invariant class if for every L-structure \mathfrak{M} in vocabulary σ and for every L-stuttering \mathfrak{M}' of \mathfrak{M}, $\mathfrak{M}' \in K \iff \mathfrak{M}' \in K$.

We say that a sentence φ is stutter-invariant relative to L whenever the class of L-structures in which φ is satisfied is stutter-invariant. Every $\mu TL(U)$-sentence is stutter-invariant relative to L (see Chapter 4). To see that it is not possible in $\mu TL(U)$ to define $\Diamond \varphi$, it is hence enough to observe that the sentence $\Diamond p$ is not stutter-invariant. Also, considering a L-structure \mathfrak{M}, w, there is always a unique (up to isomorphism) \mathfrak{M}', w' which is stutter-free relative to L and such that \mathfrak{M}, w is a stuttering of \mathfrak{M}', w'. Observe that it follows that if a $\mu TL(U)$-formula is satisfiable in some L-structure, it is also satisfiable in a L-structure which is stutter-free relative to L. Additionally, on L, we can show that $\mu TL(U)$ is exactly the stutter-invariant fragment of μTL:

Theorem 5.2.9. Let \(\varphi \) be a \(\mu \text{TL} \)-sentence which is stutter-invariant relative to \(L \). Then, there exists a \(\mu \text{TL}(U) \)-sentence \(\varphi^* \) which is equivalent to \(\varphi \) on \(L \)-structures.

Proof. The proof can be found in Chapter 4.

5.3 The Logic \(\mu \text{TL}(\Diamond \Gamma) \)

In this Section, we introduce the logic \(\mu \text{TL}(\Diamond \Gamma) \) and we show that, as far as expressivity is concerned, it is a fragment of \(\mu \text{TL} \). More precisely, we show that \(\mu \text{TL}(\Diamond \Gamma) \) has exactly the same expressive power as \(\mu \text{TL}(U) \). In the last Sections, we will see that \(\mu \text{TL}(\Diamond \Gamma) \) can be used as a very convenient tool to show completeness results for \(\mu \text{TL}(U) \).

\(\mu \text{TL}(\Diamond \Gamma) \) is a variation of \(\mu \text{TL} \) where instead of the regular \(\Diamond \) modality, we consider the family of its stutter-invariant counterparts. For each finite set \(\Gamma \) of \(\mu \text{TL}(\Diamond \Gamma) \)-sentences, we consider a \(\Diamond \Gamma \) operator which intuitively means “at the next distinct point with respect to \(\Gamma \)” (i.e., distinct with respect to the values it assigns to the formulas in \(\Gamma \)). To design this operator, we took inspiration from [61], where a “next distinct” operator was mentioned in passing. This operator was interpreted in \(\sigma \)-structures as our \(\Diamond \sigma \) operator. In order to obtain a well-behaved operator, we relativize it here to any finite set \(\Gamma \) of sentences. This gives rise to a better-behaved logic, where we can define a natural notion of substitution and where the truth of \(\sigma \)-formulas in \(\sigma \)-structures is preserved in \(\sigma^+ \)-expansions of these structures (with \(\sigma^+ \supseteq \sigma \)).

We interpret \(\mu \text{TL}(\Diamond \Gamma) \)-formulas in the same type of structures as \(\mu \text{TL} \)-formulas, i.e., structures of the form \(\mathfrak{M} = (L, V) \) where \(L \in L_{\text{fin}} \cup L_{\omega} \). For any finite set of \(\mu \text{TL}(\Diamond \Gamma) \)-formulas and for any points \(w, w' \), we write \(w \equiv_{\Gamma} w' \) if \(w \) and \(w' \) satisfy the same formulas in \(\Gamma \).

Definition 5.3.1. Let \(\sigma \) be a finite propositional signature and \(V = \{x_1, x_2, \ldots \} \) a disjoint countably infinite stock of propositional variables. We inductively define the set of \(\mu \text{TL}(\Diamond \Gamma) \)-formulas as follows:

\[
\varphi, \psi, \xi := At \mid T \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond \varphi \mid \mu x_i \xi
\]

where \(At \in \sigma \cup V \), \(\Gamma \) is a finite set of \(\mu \text{TL}(\Diamond \Gamma) \)-formulas and, in the last clause, \(x_i \) occurs only positively in \(\xi \) (i.e., within the scope of an even number of negations). We use \(\Box \varphi, \varphi \rightarrow \psi \) and \(\nu x_i \xi(x_i) \) as shorthand for \(\neg \Diamond \neg \varphi \), \(\neg (\varphi \land \neg \psi) \) and \(\neg x_i \mu \neg \xi(\neg x_i) \), respectively. We interpret \(\mu \text{TL}(\Diamond \Gamma) \)-formulas as \(\mu \text{TL} \)-formulas, except that:

\[
(L, V, w) \models \Diamond \varphi \text{ if } \exists w' > w \text{ such that } w \not\equiv_{\Gamma} w', \forall w'' \text{ with } w < w'' < w', w'' \equiv_{\Gamma} w \text{ and } (L, V, w') \models \varphi
\]
The resulting logic is stuttering invariant. We write Voc(ϕ) for the vocabulary of ϕ and Voc(Γ) for \(\bigcup_{\varphi \in \Gamma} \text{Voc}(\varphi) \). Note that we include in the vocabulary of a formula all the proposition letters occurring in it, including those which occur in the formulas contained in the sets \(\Gamma \) indexing its modalities. This remark particularly matters for the notion of substitution, as whenever a formula is to be uniformly substituted for a proposition letter, the operation has to be done everywhere, including in the formulas contained in the sets indexing the modalities. Otherwise, validity would not be preserved by uniform substitution. Consider for instance \((p \land \varnothing(p) \top) \rightarrow \varnothing(p) \neg p\). It is clear that this formula is valid and that for any \(\mu \text{TL}(\varnothing)\)-formula \(\varphi \), \(\models (\varphi \land \varnothing(\varphi) \top) \rightarrow \varnothing(\varphi) \neg \varphi \) also holds. But it is also very clear that \(\not\models (\varphi \land \varnothing(\varphi) \top) \rightarrow \varnothing(\varphi) \neg \varphi \).

We will now provide a way to compare \(\mu \text{TL}(\varnothing) \) and \(\mu \text{TL}(U) \), by defining two recursive procedures transforming each formula from one language into an equivalent formula from the other language.

Definition 5.3.2. Let \(\Gamma = \{ \varphi_0, \ldots, \varphi_{n-1} \} \) be a finite set of \(\mu \text{TL}(\varnothing)\)-formulas. Whenever \(\Gamma \neq \emptyset \), we define \(B_{\Gamma} \) as the set of all possible mappings \(\Gamma \rightarrow \{ \bot, \top \} \), and for each \(g \in B_{\Gamma} \), we let \(\beta_g \) be the formula \(\alpha_0 \land \ldots \land \alpha_{n-1} \) where \(\alpha_j = \varphi_j \) if \(g(\varphi_j) = \top \) and \(\alpha_j = \neg \varphi_j \) if \(g(\varphi_j) = \bot \). By convention, we set \(B_{\emptyset} = \{ \bot, \top \} \).2

Definition 5.3.3 (\(\mu \text{TL}(U)\)-translation of a \(\mu \text{TL}(\varnothing)\)-formula). Let \(\varphi \) be a \(\mu \text{TL}(\varnothing)\)-formula, we recursively define its \(\mu \text{TL}(U)\)-translation \(\varphi_{\mu \text{TL}(U)} \) via the following procedure. \(\varphi_{\mu \text{TL}(U)} = \varphi \), \((\neg \varphi)_{\mu \text{TL}(U)} = \neg \varphi_{\mu \text{TL}(U)} \), \((\varphi \land \psi)_{\mu \text{TL}(U)} = \varphi_{\mu \text{TL}(U)} \land \psi_{\mu \text{TL}(U)} \), \((\mu \varphi)_{\mu \text{TL}(U)} = \mu \varphi \varphi_{\mu \text{TL}(U)} \), and \((\varnothing \varphi)_{\mu \text{TL}(U)} = \bigvee_{g \in B_{\Gamma}} (\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \). \(\bigvee_{g \in B_{\Gamma}}(\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \). \(\bigvee_{g \in B_{\Gamma}}(\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \). \(\bigvee_{g \in B_{\Gamma}}(\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \).

Proposition 5.3.4. Let \(L \in \{ L_{\omega}, L_{\text{fin}}, L_{\omega} \cup L_{\text{fin}} \} \) and \(\varphi \) be a \(\mu \text{TL}(\varnothing)\)-formula, \(\varphi \) and \(\varphi_{\mu \text{TL}(U)} \) are equivalent on \(L \)-structures.

Proof. We show that a class of \(\sigma \)-structures based on \(L_{\text{fin}} \cup L_{\omega} \), is definable by a \(\mu \text{TL}(\varnothing)\)-formula if and only if it is definable by its \(\mu \text{TL}(U)\)-translation. Let \((W, <), V, w)\) be a \(\sigma \)-structure (by induction hypothesis, we assume the property holds for \(\varphi, \varphi_{\mu \text{TL}(U)} \)).

Assume \((W, <), V, w) \models \varnothing \varphi \), i.e., there exists \(w' \succ w \) such that \(w \not\equiv \top \) \(w' \) and \(\forall w'' \) with \(w < w'' < w' \), \(w'' \equiv \top \) \(w \) and \((W, <), V, w') \models \varphi \). So there are \(g \neq g' \in B_{\Gamma} \) such that \(\exists w, w \models \beta_g \) and there exists \(w' \succ w \) with \((W, <), V, w') \models \beta_g \land \varphi_{\mu \text{TL}(U)} \) and for all \(w'' \) such that \(w < w'' < w' \), \((W, <), V, w'') \models \beta_g \). By induction hypothesis, \((W, <), V, w) \models \bigvee_{g \in B_{\Gamma}} (\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \).\)

Assume \((W, <), V, w) \models \bigvee_{g \in B_{\Gamma}} (\beta_g \land \beta_g \Uparrow (\neg \beta_g \land \varphi_{\mu \text{TL}(U)}) \). So there are \(g \neq g' \) such that \(\beta_g \Uparrow (\beta_g \land \varphi_{\mu \text{TL}(U)}) \), i.e., there exists \(w' \) such that \(\beta_g \Uparrow (\beta_g \land \varphi_{\mu \text{TL}(U)}) \). As \(g \neq g' \), also \(w \not\equiv \top \) \(w' \). By induction hypothesis, \((W, <), V, w) \models \varnothing \varphi \). □

\(^2\)We adopt this convention because we allowed \(\Gamma \) to be empty (see the instantiation of Axiom \(\text{A6'} \) where \(\Gamma = \emptyset \), our convention will guaranty that \(\varnothing \varphi \), which is not satisfiable, is also inconsistent), but we could also have required that \(\Gamma \neq \emptyset \).
5.3. The Logic $\mu TL(\diamond \Gamma)$

Definition 5.3.5 ($\mu TL(\diamond \Gamma)$-translation of a $\mu TL(U)$-formula). Let φ be a $\mu TL(U)$-formula in vocabulary σ, we recursively define its $\mu TL(\diamond \Gamma)$-translation $\varphi_{\mu TL(\diamond \Gamma)}$ via the following procedure. $At_{\mu TL(\diamond \Gamma)} = At$, $(\neg \varphi)_{\mu TL(\diamond \Gamma)} = \neg\varphi_{\mu TL(\diamond \Gamma)}$, $(\varphi \land \psi)_{\mu TL(\diamond \Gamma)} = \varphi_{\mu TL(\diamond \Gamma)} \land \psi_{\mu TL(\diamond \Gamma)}$, $(\mu x. \varphi)_{\mu TL(\diamond \Gamma)} = \mu x. \varphi_{\mu TL(\diamond \Gamma)}$, and $(\varphi U \psi)_{\mu TL(\diamond \Gamma)} = \mu x. (\psi_{\mu TL(\diamond \Gamma)} \land \diamond x_{\sigma})$.

Proposition 5.3.6. Let $L \in \{L_{\omega}, L_{\text{fin}} \cup L_{\text{fin}}, L_{\omega} \}$ and φ be a $\mu TL(U)$-formula. Then φ and $\varphi_{\mu TL(\diamond \Gamma)}$ are equivalent on L-structures.

Proof. We show that a class of σ-structures based on $L_{\text{fin}} \cup L_{\omega}$, is definable by a $\mu TL(U)$-formula if and only if it is definable by its $\mu TL(\diamond \Gamma)$-translation. Let $((W, <), V, w)$ be a σ-structure (by induction hypothesis, we assume the property holds for $\varphi, \varphi_{\mu TL(\diamond \Gamma)}$ and $\psi, \psi_{\mu TL(\diamond \Gamma)}$ respectively).

Assume $((W, <), V, w) \models \varphi U \psi$. This means either that w satisfies ψ, or w satisfies φ and it is separated from some subsequent w' satisfying ψ by a finite sequence of points which all satisfy φ. So, by induction hypothesis, $((W, <), V, w) \models \mu x. (\psi_{\mu TL(\diamond \Gamma)} \land \diamond x_{\sigma})$, because $\mu x. (\psi_{\mu TL(\diamond \Gamma)} \land \diamond x_{\sigma})$ states that the current state belongs to the least fixpoint which contains all the points satisfying $\psi_{\mu TL(\diamond \Gamma)}$, together with all the points that satisfy $\varphi_{\mu TL(\diamond \Gamma)}$ and which are immediate predecessors of a point which is already in the fixpoint.

Assume $\mu x. (\psi_{\mu TL(\diamond \Gamma)} \land \diamond x_{\sigma})$, i.e., w belongs to the least fixpoint which contains all the points satisfying $\psi_{\mu TL(\diamond \Gamma)}$, together with all the points that satisfy $\varphi_{\mu TL(\diamond \Gamma)}$ and which are immediate predecessors of a point which is already in the fixpoint. This means that either w satisfies $\psi_{\mu TL(\diamond \Gamma)}$, or it satisfies $\varphi_{\mu TL(\diamond \Gamma)}$ and it is separated from some subsequent w' satisfying $\psi_{\mu TL(\diamond \Gamma)}$ by a finite sequence of successor points which all satisfy $\varphi_{\mu TL(\diamond \Gamma)}$ and by induction hypothesis, $((W, <), V, w) \models \varphi U \psi$. \hfill \square

Corollary 5.3.7. $\mu TL(U)$ and $\mu TL(\diamond \Gamma)$ have the same expressive power on the class of finite and ω-words.

Proof. Follows from Propositions 5.3.4 and 5.3.6. \hfill \square

Remark 5.3.8. It follows that $\diamond \Gamma$ can be used as shorthand either in μTL or in $\mu TL(U)$, that U can be used as shorthand in $\mu TL(\diamond \Gamma)$ and that $\mu TL(\diamond \Gamma)$ is definable as a semantic fragment of μTL. In the remainder of the chapter, this will be assumed.

Now in order to see that both $\mu TL(\diamond \Gamma)$ and $\mu TL(U)$ strictly extend $\text{LTL}(U)$, let us give an example of a class of finite words which is known to be not definable in $\text{LTL}(U)$, while it is definable in $\mu TL(\diamond \Gamma)$ and $\mu TL(U)$. The following $\mu TL(\diamond \Gamma)$-formula is satisfied at the root of a finite word in any vocabulary σ expanding $\{p\}$ exactly whenever this word contains an even number of sequences (of arbitrary length) of states satisfying p: \hfill \blacksquare
\[\Phi := \mu x.((\neg p \land \Box p x) \lor (p \land \Diamond p \mu y.((\neg p \land \Diamond p y) \lor (p \land \Box p x)))) \]

By Proposition 5.3.4, \(\Phi_{\mu TL(U)} \in \mu TL(U) \) is equivalent to \(\Phi \). Note also that by removing the subscripts in the modal operators in \(\Phi \), we obtain the following \(\mu TL \)-formula:

\[\Phi' := \mu x.((\neg p \land \Box x) \lor (p \land \Diamond p \mu y.((\neg p \land \Diamond y) \lor (p \land \Box x)))) \]

which is satisfied at the root of a finite word in vocabulary \(\sigma \) exactly whenever this word contains an even number of \(p \) (i.e., whenever \(p \) is satisfied at an even number of states). Note also that the property defined via \(\Phi \) is the closure under stuttering of the one defined via \(\Phi' \). This suggests a natural procedure - via indexing of the modalities in the formula - to characterize in \(\mu TL(\Diamond \Gamma) \) the closure under stuttering of \(\mu TL \)-properties, which illustrates a close connection between the syntax of \(\mu TL \) and \(\mu TL(\Diamond \Gamma) \). It is admittedly difficult to write specifications in \(\mu TL \) (c.f. [131]), but the difficulty does not seem to be higher in the case of \(\mu TL(\Diamond \Gamma) \).

5.4 Complete Axiomatization of \(\mu TL(\Diamond \Gamma) \)

In this Section, we show some completeness results for the logic \(\mu TL(\Diamond \Gamma) \). We will use them in the next Section as a tool to obtain similar results for the logic \(\mu TL(U) \).

Proposition 5.4.1. Let \(\varphi \) be a \(\mu TL(\Diamond \Gamma) \)-formula in vocabulary \(\sigma \) containing no free occurrence of the variable \(x \). On the class of finite and \(\omega \)-words, the following formulas are equivalent:

- \(\forall g \in B_\sigma(\beta_g \land \mu x.((\neg \beta_g \land \varphi) \lor (\beta_g \land \Diamond x))) \)
- \(\forall g \in B_\sigma(\beta_g \land \mu x.((\neg \beta_g \land \varphi) \lor (\beta_g \land \Diamond x))) \)
- \(\Diamond \sigma \varphi \)

Proof. Recall that \(U \) can be defined as shorthand in \(\mu TL(\Diamond \Gamma) \). We already noted in Section 5.2 and in Proposition 5.3.6 that on linear orders, the formulas \(\varphi U \psi \), \(\mu x.(\psi \lor (\varphi \land \Diamond x)) \) and \(\mu x.(\psi \lor (\varphi \land \Diamond x)) \) are equivalent. We also noted in Proposition 5.3.4 that in this context, the formulas \(\Diamond \sigma \varphi \) and \(\forall g \in B_\sigma(\beta_g \land \beta_g U(\neg \beta_g \land \varphi) \) are equivalent. The Proposition follows.

Definition 5.4.2. \(K_{\mu TL(\Diamond \Gamma)} \) consists of the Modus Ponens, the Substitution rule, for each \(\Gamma \), the corresponding Necessitation rule (i.e., if \(\vdash \varphi \), then \(\vdash \Box \Gamma \varphi \)) and the following axioms and rules:
Axiom can restrict our attention to σ.

Theorem 5.4.4.

5.4. Complete Axiomatization of $\mu TL(\Diamond_\Gamma)$

$A1'$ propositional tautologies,

$A2' \vdash \Box_\Gamma \varphi \leftrightarrow \Diamond_\Gamma \neg \varphi$ (dual),

$A3' \vdash \Diamond_\Gamma \varphi \rightarrow \Box_\Gamma \varphi$ (linearity),

$A4' \vdash \Box_\Gamma (\varphi \rightarrow \psi) \rightarrow (\Box_\Gamma \varphi \rightarrow \Box_\Gamma \psi)$ (K),

$A5' \vdash \varphi[x/\mu x.\varphi] \rightarrow \mu x.\varphi$ (fixpoint axiom),

FR' If $\vdash \varphi[x/\psi] \rightarrow \psi$, then $\vdash \mu x.\varphi \rightarrow \psi$ (fixpoint rule),

$A6' \vdash \Diamond_\Gamma \varphi \leftrightarrow \bigvee_{g \in B_\Gamma} (\beta_g \land \mu x.((\neg \beta_g \land \varphi) \lor (\beta_g \land \Diamond_\sigma x)))$, where $\text{Voc}(\Diamond_\Gamma \varphi) \subseteq \sigma$

(inductive meaning of \Diamond_Γ),

for each finite set $\Gamma = \{\varphi_0, \ldots, \varphi_{n-1}\}$ of $\mu TL(\Diamond_\Gamma)$-sentences and where in the three last Axioms, x does not belong to $\text{BV}(\varphi)$ and $\text{FV}(\psi) \cap \text{BV}(\varphi) = \emptyset$.

Lemma 5.4.3. Axiom $A6'$ is sound on the class of finite and ω-words.

Proof. Let σ be a finite vocabulary, Γ a finite set of $\mu TL(\Diamond_\Gamma)$-formulas and φ a $\mu TL(\Diamond_\Gamma)$-formula with $\text{Voc}(\Diamond_\Gamma \varphi) \subseteq \sigma$ and $x \notin \text{FV}(\varphi)$. As $\mu TL(\Diamond_\Gamma)$ define only stutter-invariant classes of structures, we can consider a stutter-free σ-model M with $w \in M$ and it is enough to show that the following are equivalent:

1. $M, w \models \Diamond_\Gamma \varphi$

2. $M, w \models \bigvee_{g \in B_\Gamma} (\beta_g \land \mu x.((\neg \beta_g \land \varphi) \lor (\beta_g \land \Diamond_\sigma x)))$

As for Proposition 5.4.1, this follows from what was observed in Section 5.2 and 5.3.

Theorem 5.4.4. $K_{\mu TL(\Diamond_\Gamma)}$ is complete for $\mu TL(\Diamond_\Gamma)$ with respect to the class of ω-words and with respect to the class of finite and ω-words.

Proof. Let φ be a $K_{\mu TL(\Diamond_\Gamma)}$-consistent formula in vocabulary σ. By Axiom $A6'$, we can restrict our attention to σ-formulas containing only \Diamond_σ modalities. Again by Axiom $A6'$, we can define a recursive procedure transforming φ into a $K_{\mu TL(\Diamond_\Gamma)}$-equivalent formula φ'. We set $At' = At, (\neg \varphi)' = \neg \varphi', ((\varphi \land \psi)' = \varphi' \land \psi', (\mu x.\varphi)' = \mu x.\varphi'$, and $(\Diamond_\sigma \varphi)' = \bigvee_{g \in B_\sigma} (\beta_g \land \mu y.((\neg \beta_g \land \varphi') \lor (\beta_g \land \Diamond_\sigma y)))$. Consider now the μTL-formula φ'', which we define as the result of removing in φ' all the subscripts of the modalities. Notice that by Proposition 5.4.1, φ' and φ'' are equivalent. We claim that φ'' is $K'_{\mu} + \Diamond \varphi \rightarrow \Box \varphi$-consistent. For suppose not. Then, there exists a proof of $\neg \varphi''$ using the axioms and rules of $K'_{\mu} + \Diamond \varphi \rightarrow \Box \varphi$. Now, replace every occurrence of the operator \Diamond by \Diamond_σ in each axiom and rule used in the proof. The result is a correct $K_{\mu TL(\Diamond_\Gamma)}$-proof, where only correct axioms and rules of $K_{\mu TL(\Diamond_\Gamma)}$ are used (because the $K_{\mu} + \Diamond \varphi \rightarrow \Box \varphi$ axioms and rules can be obtained from the
\(K_{\mu TL(\Diamond_T)}\) ones simply by removing the indexes of the modalities. Additionally, this is a proof of the formula \(\neg \varphi'\) (as the original \(\varphi'\) can also be obtained from \(\varphi''\) by adding the subscript \(\sigma\) to every \(\Diamond\) in \(\varphi''\)). But this contradicts the fact that \(\varphi'\) was \(K_{\mu TL(\Diamond_T)}\)-consistent. So \(\varphi''\) is \(K_{\mu} + \Diamond \varphi \rightarrow \Box \varphi\)-consistent. By Theorem 5.2.4, there is an \(\omega\)-word or a finite word \(M\) such that \(M, w \models \varphi''\) and it follows from Proposition 5.4.1 (by which \(\varphi'\) and \(\varphi''\) are equivalent) that \(M, w \models \varphi',\) i.e. (by Axiom A6'), \(M, w \models \varphi\). Completeness with respect to the class of \(\omega\)-words follows too, because every finite word has an \(\omega\)-word stuttering.

\[\text{Theorem 5.4.5.} \ K_{\mu TL(\Diamond_T)} + \mu x. \Box x \text{ is complete for } \mu TL(\Diamond_T) \text{ with respect to the class of finite words.}\]

\[\text{Proof.} \text{ We can apply the same reasoning as for the proof of Theorem 5.4.5, using completeness of } K_{\mu} + \Diamond \varphi \rightarrow \Box \varphi + \mu x. \Box x \text{ on finite words, instead of completeness of } K_{\mu} + \Diamond \varphi \rightarrow \Box \varphi \text{ on finite and } \omega\text{-words.}\]

Let \(M\) be an \(\omega\)-word. We say that \(M\) is a pseudo-finite word whenever there exists a finite word \(M'\) such that \(M\) is a stuttering of \(M'\). Note that \(K_{\mu TL(\Diamond_T)} + \mu x. \Box x\) is also complete for \(\mu TL(\Diamond_T)\) with respect to the class of finite and pseudo-finite words, as every pseudo-finite word is the stuttering of a finite word.

\[\text{Remark 5.4.6.} \text{ Axiom A6' is not derivable from the other axioms and rules. Otherwise, every } \Box \text{ would simply be interpreted as the regular } \Box \text{ operator of } \mu TL.\]

Now, more precisely, let \(K_{\mu TL(\Diamond_T)}^{-A6'}\) be the smallest set of \(\mu(\Diamond_T)\)-formulas which is closed under all axioms and rules in \(K_{\mu TL(\Diamond_T)}\), except Axiom A6'. Suppose Axiom A6' is derivable in \(K_{\mu TL(\Diamond_T)}^{-A6'}\). Then, \(K_{\mu TL(\Diamond_T)}^{-A6'}\) would be complete with respect to the class of \(\omega\)-words. Therefore, as on \(\omega\)-words \(\models (p \land \Diamond (p) \top) \rightarrow \Diamond p \neg p\), also in \(K_{\mu TL(\Diamond_T)}^{-A6'}\), \(\models (p \land \Diamond (p) \top) \rightarrow \Diamond p \neg p\) and there would exist a \(K_{\mu TL(\Diamond_T)}^{-A6'}\)-proof of this formula. But now we could replace in that proof, every modal operator by the regular \(\Diamond\) operator. This would be a correct \(K_{\mu} + \Diamond \varphi \rightarrow \Box \varphi\)-proof of \(p \land \Diamond \top \rightarrow \Diamond q\neg p\). But as on \(\omega\)-words, \(\not\models (p \land \Diamond \top) \rightarrow \Diamond q\neg p\), this contradicts the soundness of \(K_{\mu TL} + \Diamond \varphi \rightarrow \Box \varphi\). It follows that Axiom A6' is not derivable in \(K_{\mu TL(\Diamond_T)}^{-A6'}\).

\[\text{5.5 Complete Axiomatization of } \mu TL(U)\]

Recall that LTL(U) is the fragment of \(\mu TL(U)\) where the \(\mu\)-operator is disallowed. In [110], the authors propose an axiomatization of LTL(U) which is complete on the class of \(\omega\)-words and finite words. In order to axiomatize \(\mu TL(U)\), we extend here the Axioms and rules in [110] with the usual fixed-point rule and Axiom, together with an additional axiom accounting for the way the Until operator and the \(\mu\)-operator can interact together. Using the completeness result in [110] with
the completeness of $K_{\mu TL(U)}$, this allows us to derive a similar completeness Theorem for $\mu TL(U)$. Recall that, in $\mu TL(U)$, we use $G\varphi$ as shorthand for $\neg(T U \neg \varphi)$ and $\boxdot_x \varphi$ as shorthand for $\bigvee_{g \in B_x} (\beta_g U (\neg \beta_g \land \varphi))$.

Definition 5.5.1. The $K_{\mu TL(U)}$ system consists of the Modus Ponens, the G Necessitation rule (i.e., if $\vdash \varphi$, then $\vdash G\varphi$) the Substitution rule and the following axioms and rules (these rules, as well as Axioms $A1''$ to $A9''$, are borrowed from [110]):

$A1''$ propositional tautologies,

$A2''$ The Until operator is non strict:

$\vdash \varphi \rightarrow \bot U \varphi$,

$A3''$ For any consistent formula there exists a model that is a discrete linear order:

- $\vdash F\varphi \rightarrow \neg \varphi U \varphi$,
- $\vdash \varphi \land F\psi \rightarrow \neg \psi U (\varphi \land \varphi U (\neg \varphi U \psi))$,

$A4''$ Properties that hold throughout a computation hold at the initial state:

$\vdash G\varphi \rightarrow \varphi$,

$A5''$ Conventional logical deduction holds within individual states (K axiom):

- $\vdash (G(\varphi \rightarrow \psi) \rightarrow (\varphi U \xi \rightarrow \psi U \xi))$,
- $\vdash (G(\varphi \rightarrow \psi) \rightarrow (\xi U \varphi \rightarrow \xi U \psi))$,

$A6''$ Persistence of an Until formula until its second argument is satisfied:

$\vdash \varphi U \psi \rightarrow (\varphi U \psi) U \psi$.

$A7''$ Immediacy of satisfaction of an Until formula at the current state:

$\vdash \varphi U (\varphi U \psi) \rightarrow \varphi U \psi$.

$A8''$ States of the time line are not skipped over in evaluating an Until formula:

$\vdash \varphi U \psi \land \neg (\xi U \psi) \rightarrow \varphi U (\varphi \land \neg \xi)$.

$A9''$ Models are linearly ordered:

$\vdash \varphi U \psi \land \xi U \theta \rightarrow ((\varphi \land \xi) U (\psi \land \theta) \lor (\varphi \land \xi) U (\psi \land \xi) \lor (\varphi \land \xi) U (\varphi \land \theta))$.

$A10''$ $\vdash \varphi [x/\mu x. \varphi] \rightarrow \mu x. \varphi$, (fixpoint axiom),

FR'' If $\vdash \varphi [x/\psi] \rightarrow \psi$, then $\vdash \mu x. \varphi \rightarrow \psi$ (fixpoint rule),

$A11''$ $\vdash \mu x. (\psi \lor (\varphi \land \boxdot_x \varphi)) \leftrightarrow \varphi U \psi$, where $\text{Voc}(\varphi) \cup \text{Voc}(\psi) \subseteq \sigma$ (inductive meaning of U).
Chapter 5. Complete Axiomatization of $\mu\text{TL}(\text{U})$

where in the three last Axioms, x does not belong to $\text{BV}(\varphi) \cup \text{BV}(\psi)$ and $\text{FV}(\psi) \cap \text{BV}(\varphi) = \emptyset$.

Lemma 5.5.2. Let $\varphi \in \mu\text{TL}(\text{U})$. Then $\psi \leftrightarrow (\varphi_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})}$ is derivable in $K_{\mu\text{TL}(\text{U})}$.

Proof. By induction on the complexity of φ (number of Boolean, modal and fixed-point operators in φ). The base case is immediate. Assume the property holds for all formulas of complexity n. Let $\varphi \in \mu\text{TL}(\text{U})$ of complexity $n + 1$ be of the form $\xi \cup \psi$ for some $\xi, \psi \in \mu\text{TL}(\text{U})$ (otherwise, by induction hypothesis, the property follows immediately). We have:

$$(\xi \cup \psi)_{\mu\text{TL}(\Diamond \Gamma)} := \mu x.((\psi_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})} \lor ((\xi_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})} \land \bigvee_{g \in B_{\sigma}} (\beta_{\sigma} \land \beta_{g} \cup (\neg \beta_{g} \land x)))$$

and

$$(\xi \cup \psi)_{\mu\text{TL}(\Diamond \Gamma)} := \mu x.((\psi_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})} \lor ((\xi_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})} \land \bigvee_{g \in B_{\sigma}} (\beta_{g} \land \beta_{g} \cup (\neg \beta_{g} \land x)))$$

By induction hypothesis, $((\xi \cup \psi)_{\mu\text{TL}(\Diamond \Gamma)})_{\mu\text{TL}(\text{U})}$ is provably equivalent in $K_{\mu\text{TL}(\text{U})}$ to:

$$\mu x.((\xi \land \bigvee_{g \in B_{\sigma}} (\beta_{g} \land \beta_{g} \cup (\neg \beta_{g} \land x)))$$

By Axiom $A11''$ the following is derivable in $K_{\mu\text{TL}(\text{U})}$:

$$\mu x.((\xi \land \bigvee_{g \in B_{\sigma}} (\beta_{g} \land \beta_{g} \cup (\neg \beta_{g} \land x))) \leftrightarrow \xi \cup \psi$$

The property follows. \qed

Lemma 5.5.3. The $\mu\text{TL}(\text{U})$-translations of the axioms and rules of $K_{\mu\text{TL}(\Diamond \Gamma)}$ are derivable in $K_{\mu\text{TL}(\text{U})}$.

Proof. Except for the $\mu\text{TL}(\text{U})$-translation of the fixed-point Axiom and of the fixed-point rule (which are both trivially derivable from $K_{\mu\text{TL}(\text{U})}$, as they also belong to it), as well as Axiom $A6'$, there is no explicit occurrence of the μ-operator in the $\mu\text{TL}(\text{U})$-translation of the Axioms and rules of $K_{\mu\text{TL}(\Diamond \Gamma)}$. As they are sound on the class of ω-words and finite words, by the completeness Theorem in [110], together with Proposition 5.3.4, they are derivable in LTL(\text{U}). It follows that they are also derivable in $K_{\mu\text{TL}(\text{U})}$, because the Axioms and rules of $K_{\mu\text{TL}(\text{U})}$ simply extend those of LTL(\text{U}).

Now consider the $\mu\text{TL}(\text{U})$-translation of Axiom $A6'$:

$$\bigvee_{g \in B_{\sigma}} (\beta_{g} \land \beta_{g} \cup (\neg \beta_{g} \land \varphi))$$
\[\forall_{\varphi \in \mu TL(U)} K_{\mu TL(U)} \vdash \mu y. (\psi \land (\varphi \lor \diamond \varphi)) \leftrightarrow \varphi U \psi\ (which\ is\ actually\ shorthand\ for\ \vdash_{\mu y. (\psi \lor (\varphi \land \square \varphi))} \varphi U \psi).\]

Finally, let us point out that the restriction of our axioms and rules to LTL(U) formulas is actually slightly stronger than the axiomatization proposed in [110]. The authors chose to prefix all their modal axioms and rules by \(G\) and to allow the generalization rule only on propositional tautologies (our generalization rule is a derived rule in their framework). But our axioms and rule being sound, it is safe to use the completeness of their system as we do here. \(\square\)

Proposition 5.5.4. Let \(\varphi \in \mu TL(U)\) be \(K_{\mu TL(U)}\)-consistent, then its \(\mu TL(\diamond_T)\)-translation \(\varphi_{\mu TL(\diamond_T)}\) is \(K_{\mu TL(\diamond_T)}\)-consistent.

Proof. Let \(\varphi \in \mu TL(U)\) be \(K_{\mu TL(U)}\)-consistent. Now suppose \(\varphi_{\mu TL(\diamond_T)}\) is not \(K_{\mu TL(\diamond_T)}\)-consistent. So there is a \(K_{\mu TL(\diamond_T)}\)-proof of \(\neg \varphi_{\mu TL(\diamond_T)}\). By Lemma 5.5.2 and 5.5.3, this entails that there is a \(K_{\mu TL(U)}\)-proof of \(\neg \varphi\), which contradicts the \(K_{\mu TL(U)}\)-consistency of \(\varphi\). \(\square\)

Corollary 5.5.5. \(K_{\mu TL(U)}\) is complete for \(\mu TL(U)\) with respect to the class of \(\omega\)-words.

Proof. Let \(\varphi\) be a \(K_{\mu TL(U)}\)-consistent formula. Now let \(\varphi'\) be the \(\mu TL(\diamond_T)\)-translation of \(\varphi\). By Proposition 5.5.4, \(\varphi'\) is \(K_{\mu TL(\diamond_T)}\)-consistent and so, by Theorem 5.4.4, \(\varphi'\) is satisfied in some \(\omega\)-word \(\mathfrak{M}, w\). By Proposition 5.3.6, \(\varphi\) and \(\varphi'\) are equivalent on \(\omega\)-words. Hence also \(\mathfrak{M}, w \models \varphi\). \(\square\)

Proposition 5.5.6. Let \(\varphi \in \mu TL(U)\) be \(K_{\mu TL(U)} + \mu y. \square_T y\)-consistent, then its \(\mu TL(\diamond_T)\)-translation \(\varphi_{\mu TL(\diamond_T)}\) is \(K_{\mu TL(\diamond_T)} + \mu y. \square_T y\)-consistent.

Proof. The proof is similar to the proof of Proposition 5.5.4. \(\square\)

Corollary 5.5.7. \(K_{\mu TL(U)} + \mu y. \square_T y\) is complete for \(\mu TL(U)\) with respect to the class of finite words.

Proof. Similarly follows from Proposition 5.3.6, Theorem 5.4.5 and Proposition 5.5.6. \(\square\)

Remark 5.5.8. Let \(K_{\mu TL(U)}^{\neg A11''}\) be the smallest set of \(\mu TL(U)\)-formulas which is closed under all axioms and rules in \(K_{\mu TL(U)}\) except Axiom A11''. Axiom A11'' is not derivable in \(K_{\mu TL(U)}^{\neg A11''}\). Observe that the \(\mu TL\)-translation of every axiom and rule of \(K_{\mu TL(U)}^{\neg A11''}\) is sound when instantiated by \(\mu TL\)-formulas and that, by completeness of \(\mu TL\), their \(\mu TL\)-translations are also derivable in \(\mu TL\). So if
Chapter 5. Complete Axiomatization of $\mu TL(U)$

Axiom $A11''$ was derivable in $K_{\mu TL(U)}^{A11''}$, its μTL-translation would be also derivable (and hence, valid) in $K_\mu + \Diamond \varphi \to \Box \varphi$. But let M be a finite word in vocabulary $\{p\}$ with $W = \{w_0, w_1, w_2\}$, $w_i < w_{i+1}$ and $V(p) = w_2$. Obviously $M, w_0 \models \mu x.(p \lor (\Diamond \Diamond p \land \Diamond \{p\} x))$, but $M, w_0 \not\models (\Diamond \Diamond p) Up$, i.e., $M, w_0 \not\models \mu x.(p \lor (\Diamond \Diamond p \land \Diamond \{p\} x)) \leftrightarrow (\Diamond \Diamond p) Up$.

5.6 Conclusion

In this chapter, we studied the logic $\mu TL(U)$. We introduced for that purpose the logic $\mu TL(\Diamond \Gamma)$ as a technical tool in order to easily obtain completeness results for $\mu TL(U)$. In Chapter 4, we used a similar trick to show that $\mu TL(U)$ satisfies uniform interpolation. A number of other interesting logical properties of $\mu TL(U)$ remain to be investigated. In particular, we could examine counterparts of the Los Tarski Theorem and of the Lyndon Theorem, which the μ-calculus was shown in [46] to satisfy. More generally, the logic $\mu TL(\Diamond \Gamma)$ could also be used as a tool in order to easily transfer results from μTL to languages capturing exactly its stutter-invariant fragment (see for instance the frameworks in [61], [117], or [50]).

The method that we used here in order to show completeness results could also be reused in other contexts. It may for instance be applicable to the extension of $\mu TL(U)$ with past tense operators or to the stutter-invariant fragment of the μ-calculus on trees (either finite or infinite). For a discussion of stuttering on trees, see [33] and [81], or [72], [73] and [80] in the setting of process algebra. It should be noted, though, that on (especially infinite) trees, there is still no general consensus on the appropriate notion of stuttering and that it is questionable whether the “Until only” fragment and the stutter-invariant fragment of the μ-calculus actually coincide. A further generalization would be to consider finite game trees (as studied in the next chapter), which actually carry a bit more structure than plain finite trees. In the context of game equivalence, the notion of stuttering could indeed constitute an interesting alternative to the notion of bisimulation (for a discussion see [13]).