LETGS observations of delta Orionis: A collisional ionization equilibrium model

Raassen, A.J.J.; Pollock, A.M.T.

DOI
10.1063/1.3475215

Publication date
2010

Document Version
Final published version

Published in
X-Ray Astronomy-2009 : Present Status, Multi-Wavelenght Approach and Future Perspectives

Citation for published version (APA):
https://doi.org/10.1063/1.3475215

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:16 Sep 2023
LETGS observations of delta Orionis:
A collisional ionization equilibrium model

A.J.J. Raassen* † and A.M.T. Pollock**

*SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
†Astronomical Institute "Anton Pannekoek", Science Park 904, 1098 XH Amsterdam, The Netherlands
**European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 50727, Villanfranca del Castillo, 28080 Madrid, Spain

Abstract. We present results of the analysis of the X-ray spectrum of the giant O-star δ Orionis (O9.5II), observed in the wavelength range 5–175 Å by the X-ray detector HRC-S in combination with the grating LETG on-board Chandra. We report on the Temperatures, Emission measures, variability in the stellar wind, and the distance of the X-ray emitting plasma to the stellar surface.

Keywords: Hot stars; X-rays; spectroscopy
PACS: 32.30.Rj, 97.10.Ex

INTRODUCTION

Since the launch of the first X-ray observatories (Einstein, ROSAT, ASCA) it is known that nearly all O-stars and early B-stars emit X-ray radiation originating in the stellar wind. It is generally believed that instabilities in the strong line driven stellar wind is the mechanism that heats small parts in the wind (e.g., Lucy & White 1980, Dessart & Owocki 2005). The size of these parts (clumps) and the height in the stellar wind where they are formed are still subject of debate.

Recently the X-ray spectrum of ζ Ori obtained with RGS aboard XMM-Newton was analyzed by Pollock (2007) and Raassen et al. (2008). Pollock raised the question whether the X-rays were formed further out in the wind and whether cooler plasma would be detectable in the higher wavelength range observable with LETGS aboard Chandra. For this purpose δ Ori was observed with LETGS.

RESULTS

The LETGS spectrum of δ Ori did not show line features above 40 Å, but many features of H- and He-like ions and Fe lines below that wavelength.

The line rich spectrum was analyzed with the Collisional Ionization Equilibrium model in SPEX. Three temperature components have been determined (see Table 1).

The ratio between the forbidden and intercombination line in the He-like ions is density dependent in cool stars and UV-radiation field strength dependent in hot stars.
TABLE 1. Temperature and emission measures obtained with a CIE model containing 3 components.

<table>
<thead>
<tr>
<th></th>
<th>Comp1</th>
<th>Comp2</th>
<th>Comp3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (KeV)</td>
<td>0.104(.006)</td>
<td>0.210(.008)</td>
<td>0.615(.012)</td>
</tr>
<tr>
<td>Em. m. (10^{54} cm$^{-3}$)</td>
<td>1.39(.38)</td>
<td>1.25(.21)</td>
<td>1.25(.26)</td>
</tr>
</tbody>
</table>

The latter is a measure for the distance between the emitting plasma and the stellar surface (Blumenthal et al. 1972). Based on the ions N VI, O VII, Ne IX, and Mg XI (related to going from cooler to hotter plasma) the average emission area is established to be at 50, 7.5, 5, and 2 stellar radii.

![Figure 1](image1.png)

FIGURE 1. The f/i ratios in N VI, O VII, Ne IX, and Mg XI as function of the distance to the stellar surface (left panel). Bold the average distance to the surface. The light curve of the X-ray spectrum of δ Ori (right panel).

Apart from this spectral analysis δ Ori is a complex system including an eclipsing companion. At the beginning of the observation δ Ori was eclipsed as is noticeable from the figure of the lightcurve. This indicates that part of the X-ray emitting plasma is nearby the stellar surface, closer than the companion star (33 R_\odot, 3 R_*).

ACKNOWLEDGMENTS

The SRON Netherlands Institute for Space Research is supported financially by NWO

REFERENCES