Measurement of W^+W^- production in association with one jet in proton–proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Contents lists available at ScienceDirect

Physics Letters B

A R T I C L E I N F O

Article history:
Received 11 August 2016
Received in revised form 7 October 2016
Accepted 8 October 2016
Available online 14 October 2016
Editor: W.-D. Schlatter

A B S T R A C T

The production of W boson pairs in association with one jet in pp collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta| < 4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma_{WW}^{\text{fid,1-jet}} = 136 \pm 6 \text{(stat)} \pm 14 \text{(syst)} \pm 3 \text{(lumi)} \text{ fb}$. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be $\sigma_{WW}^{\text{fid,0,1-jet}} = 511 \pm 9 \text{(stat)} \pm 26 \text{(syst)} \pm 10 \text{(lumi)} \text{ fb}$. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36 ± 0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The measurement of the production of two W bosons is a crucial test of the non-Abelian gauge structure of the electroweak theory of the Standard Model (SM). The increasing precision of the experimental measurements at the LHC has elicited improved theoretical descriptions of the process. Progress has been made to extend the next-to-leading-order (NLO) [1] calculation of $pp \to W^+W^-$ production to include next-to-next-to-leading-order (NNLO) effects [2] in perturbative quantum chromodynamics (QCD). A separate calculation of the loop-induced, non-resonant $gg \to W^+W^-$ production process has been made available at order $\mathcal{O}(\alpha_s^2)$ [3] in the strong coupling constant α_s. Resonant WW^* production via the exchange of a Higgs boson has been calculated to order $\mathcal{O}(\alpha_s^2)$ [4] and $\mathcal{O}(\alpha_s^3)$ [5]. These predictions can be summed to give an updated prediction for the total cross section of 65.0$^{+1.2}_{-1.1}$ fb as further detailed in Section 7. In addition to these new calculations, fully differential NNLO predictions [6] have become available, as have dedicated NLO predictions for jet-associated WW production [7,8] with up to three jets [9]. The resummation of logarithms arising from a selection on the number of jets has been presented at next-to-next-to-leading-logarithm (NNLL) accuracy in Refs. [10,11]. It is therefore interesting to study WW production in association with jets to confront these calculations with experimental data from the LHC.

A measurement of the jet multiplicity in WW events at the CDF experiment was published in Ref. [12]. At the LHC, the CMS Collaboration has included WW production in association with one jet in their measurement of the total WW production cross section at $\sqrt{s} = 8$ TeV [13], but has not published dedicated fiducial cross sections of jet-associated WW production.

This letter presents a measurement of the fiducial cross section of WW production using the decay chain $W^+W^- \to e^\pm\nu_\pm\mu^\mp\nu_\mu$ in final states with one associated hadronic jet, further referred to as 1-jet final state. The fiducial region is defined using stable particles at the generator level and is chosen to match the experimental selection as closely as possible.

Only events with exactly one reconstructed jet are selected for the analysis, while events with a larger number of jets suffer from a large background from top-quark production and are not considered. The selected WW candidate event sample is corrected for background processes, detection efficiencies and resolution effects, and the cross section of $WW + 1$-jet production is extracted for the fiducial phase-space region. The results are combined with a previous measurement reported in Ref. [14] restricted to final

E-mail address: atlas.publications@cern.ch.

http://dx.doi.org/10.1016/j.physletb.2016.10.014
0370-2693/© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
states without any reconstructed jets, referred to as 0-jet final state. The fiducial $W W^+ + 1$-jet cross section and the ratio R_1 of the fiducial $W W^+ + 1$-jet and fiducial $W W^+ + 0$-jet cross sections are determined and compared to different theoretical predictions. The measurement therefore extends the fiducial phase space of the previous measurement of the $W W$ production cross section.

2. Data and Monte Carlo samples

The ATLAS detector [15] is a general-purpose detector measuring collisions at the Large Hadron Collider (LHC) with coverage over the full azimuthal angle ϕ. It consists of an inner detector surrounded by a 2 T solenoid to measure tracks with pseudorapidities of $|\eta| < 2.5$, electromagnetic and hadronic calorimeters to provide energy measurements for $|\eta| < 4.9$, and a muon spectrometer with a toroidal magnetic field to detect muons with $|\eta| = 2.7$. A three-level trigger system selects events to be read out.

The measurement uses data collected with the ATLAS experiment during the 2012 data-taking period. Only runs with stable proton beams colliding at $\sqrt{s} = 8$ TeV are used in which all relevant detector components were functional. This data sample corresponds to an integrated luminosity of 20.3 fb^{-1} determined with an uncertainty of $\pm 1.9\%$ and derived from beam-separation scans performed in November 2012 [16].

The analysis relies on event simulation to correct the measured event yields for experimental effects and for the study of background processes. Different simulated event samples are used to model the signal from the individual production mechanisms: $q \bar{q} \rightarrow W^+ W^-$ events are simulated using the POWHEG 1.0 generator [17–21], which is interfaced to PYTHIA 8.170 [22]; for the non-resonant gg-induced WW signal the gg2WW program (version 3.1.3) [23] is employed and interfaced to HERWIG 6.5/JIMMY 4.31 [24,25]; resonant WW^* production via a Higgs boson with a mass of $m_H = 125 \text{ GeV}$ is modelled using POWHEG+PYTHIA 8.170. The three event samples are simulated using the CT10 NLO [26] parton distribution function (PDF). Photon radiation is modelled using PHOTOS [27]. The parameter tune used for the underlying event is AU2 [28]. The event samples are normalised to a cross section times branching ratio of 5.58 pb ($q \bar{q} \rightarrow W^+ W^-$ [1]), 0.153 pb (non-resonant $gg \rightarrow W^+ W^-$ [23]) and 0.435 pb ($gg \rightarrow H \rightarrow W^+ W^-$ [4]). The sum of these contributions corresponds to a total WW cross-section of $58.7^{+4.8}_{-5.0}$ pb where the uncertainties are due to scale and PDF uncertainties in the cross section calculations. For additional studies a sample of simulated $q \bar{q} \rightarrow W^+ W^-$ events produced with MC@NLO [18] and JIMMY [24,25] using the AUET2 tune [29] and the CT10 PDF is used.

Production of pairs of top quarks, $t\bar{t}$-channel single top-quark production and W-associated top-quark production are modelled with the POWHEG+PYTHIA 6 generator with the AU2 [28] tune. Single top-quark production in the t-channel is described by the AERZ 3.7 [30] MC generator interfaced to PYTHIA 6 [31] with the AUET2 tune [32]. These events samples are normalised to the respective NNLO+NLL calculations [33–36] to obtain the relative contribution to the total top-quark background, whose overall normalisation is determined from data as detailed in Section 4.

Background from W and Z boson production is modelled using ALPGEN 2.14 [37] interfaced to PYTHIA 6 and normalised to NNLO calculations [38] where needed. The AUET2 tune is used for the underlying event. The diboson background processes WZ and ZZ are generated using the same settings as employed for the simulated $q \bar{q} \rightarrow W^+ W^-$ event samples. The production of a W boson and a virtual photon (γ^*) is generated using the SHERPA generator (version 1.4.2) [39]. For $W\gamma$ production ALPGEN+HERWIG+JIMMY is employed.

In all simulated event samples, additional pp collisions accompanying the hard-scatter interactions (pile-up) are modelled by overlaying minimum-bias events generated using PYTHIA 8. To simulate the detector response, the generated events are passed through a detailed simulation of the ATLAS detector [40] based on GEANT4 [41] or GEANT4 combined with a parameterised calorimeter simulation [42].

3. Object reconstruction and event selection

Events are selected using reconstructed jets, electrons, muons and missing transverse momentum. The selection follows closely the one in Ref. [14] to facilitate the combination with the $WW + 0$-jet final state. Electrons and muons are identified based on tracks in the inner detector matched either to energy deposits in the electromagnetic calorimeter or combined with tracks in the muon spectrometer, respectively. Electrons are reconstructed within $|\eta| < 2.47$ excluding the transition region between barrel and endcap calorimeters of $1.37 < |\eta| < 1.52$. Muons are required to lie within $|\eta| < 2.4$. The same reconstruction and identification requirements as in Ref. [14] are used, resulting in an event sample with minimal contributions from backgrounds due to particles misidentified as leptons, particularly from $W +$ jets, multijet and $W\gamma$ events. For the selection of WW candidate events, the presence of exactly two isolated, oppositely charged leptons ($\ell^+\ell^-$) with transverse momenta of $p_T^{\ell^+} > 25 \text{ GeV}$ and $p_T^{\ell^-} > 20 \text{ GeV}$ is required. Only final states with one electron and one muon are used. Events with additional leptons with $p_T > 7 \text{ GeV}$ are rejected, which helps to suppress other diboson processes with more than two leptons. It is required that at least one of the leptons has met an online single-lepton selection or both have passed a dilepton trigger with reduced thresholds and less stringent object identification criteria. This setup has an efficiency of 99%–100% with respect to the offline lepton selection.

Jets are formed using calibrated topological clusters of energy [43] reconstructed in the calorimeters using the anti-k_t algorithm [44] with radius parameter $R = 0.4$. Further corrections to the jet energy are applied based on simulation [45] and are followed by a pile-up suppression [46]. Jets are required to have $p_T > 25 \text{ GeV}$ and $|\eta| < 4.5$. More than 50\% of the scalar sum of the p_T of all tracks contained within $\Delta R = 0.4$ of the jet axis is required to be from tracks associated with the primary vertex to suppress contributions from additional pp interactions in the event [47] if the jet satisfies $p_T < 50 \text{ GeV}$ and $|\eta| < 2.4$. Only events with exactly one jet meeting the above criteria are selected. Jets containing b-hadrons (so-called b-jets) are identified within the central region of the detector, $|\eta| < 2.5$, using a multivariate approach [48,49] with an efficiency of 85\%. To reduce the background from top-quark production, events containing b-jets with $p_T > 20 \text{ GeV}$ and within $|\eta| < 2.5$ are rejected.

Selection requirements on the missing transverse momentum in the candidate events are used to reduce the contribution of events from $Z\gamma^* \rightarrow \tau\tau$ (Drell-Yan) production where both τ-leptons decay leptonically. Missing transverse momentum is reconstructed from the vector sum of the transverse momenta of identified particles [50] to which either reconstructed jets and calorimetric depo-
sitions not associated with any particle are added. Missing transverse momentum induced by mismeasurements of the energy of leptons is further reduced in the calorimeter-based measurement by projecting the missing transverse momentum \(E_{\text{T}}^{\text{miss}} \) onto nearby leptons, to calculate the so-called relative missing transverse momentum \(E_{\text{T}}^{\text{miss}} \), \(\Delta \phi \). A lepton is considered nearby if the azimuthal separation to the \(E_{\text{T}}^{\text{miss}} \) direction is small, \(\Delta \phi (E_{\text{T}}^{\text{miss}}, \ell) < \pi/2 \), and only in this case, \(E_{\text{T}}^{\text{miss}} \) is modified to yield \(E_{\text{T}}^{\text{miss}} \), \(\Delta \phi \). The relative missing transverse momentum is required to be \(E_{\text{T}}^{\text{miss}} \), \(\Delta \phi < 15 \) GeV. The track-based measurement of the missing transverse momentum \(p_{\text{T}}^{\text{miss}} \) is constructed by adding the momenta of tracks associated with the primary vertex to the vector sum of the transverse momenta of identified electrons and muons. By construction, \(p_{\text{T}}^{\text{miss}} \) is less sensitive to energy deposits from additional interactions and it is required to be \(p_{\text{T}}^{\text{miss}} > 20 \) GeV. To further reduce the sensitivity to fluctuations in either of the missing transverse momentum variables used, the azimuthal separation between \(E_{\text{T}}^{\text{miss}} \) and \(p_{\text{T}}^{\text{miss}} \) must satisfy \(\Delta \phi (E_{\text{T}}^{\text{miss}}, p_{\text{T}}^{\text{miss}}) < 2 \). The invariant mass of the two selected leptons, \(m_{\ell\ell} \), is required to be greater than 10 GeV to suppress contributions from misidentified leptons produced in multijet and \(W + \) jets events. Apart from the requirements on the jets and \(\Delta \phi \), this event selection is identical to the one employed in Ref. [14].

4. Determination of backgrounds

The experimental signature of exactly one electron and one muon with opposite electric charge, and missing transverse momentum can be produced by a variety of SM processes which are treated as backgrounds. Top quarks decay almost exclusively to a b-quark and a W boson. This makes \(t\bar{t} \) and single top-quark production the dominant background to \(WW \) production, in particular for events with jets in the final state. The background yield from top-quark production is determined using a method proposed in Ref. [51]. The event yield is extrapolated from a control sample enriched in events from top-quark production. It is defined by the nominal selection requirements but must contain exactly one identified b-jet with \(p_{\text{T}} > 25 \) GeV and within \(\Delta \phi < 2 \), instead of requiring the absence of identified b-jets. The distribution of the transverse momentum of the b-jet in the control sample is shown in Fig. 1(a). The data is used to constrain the large experimental and theoretical uncertainties shown by the error bands. The factor to extrapolate from this control sample to the signal sample is determined as the ratio of jets passing or failing the b-jet requirement in additional control samples, defined by the presence of two jets, at least one of which passes the b-tag requirement. Systematic effects resulting from the choice of the control sample are corrected for by an additional factor estimated from simulated events. The correction introduces experimental systematic uncertainties of \(\pm 3.1 \), mainly from the uncertainty in the jet energy scale. Theoretical uncertainties are found to amount to \(\pm 2.5 \) and are dominated by differences in simulated \(t\bar{t} \) event samples produced with POWHEG and MC@NLO, and uncertainties in the \(Wt \) production cross section. Statistical uncertainties from the limited size of the control samples in data and simulation introduce an uncertainty of \(\pm 3.5 \), resulting in an overall precision in the estimated top-quark background yield of \(\pm 5.2 \).

The estimation of the remaining background processes closely follows the methodology described in Ref. [14]. Data-driven estimates of the yields of \(W + \) jets and multijet production are determined in an event sample in data that is selected with relaxed identification and isolation criteria for the leptons. The composition of this event sample with genuine and misidentified leptons can be inferred using the probabilities of genuine and misidentified leptons selected with the relaxed criteria to satisfy the nominal lepton selection criteria. The yield of background from Drell–Yan production is obtained from a simultaneous fit of the distribution of simulated event samples to the \(\Delta \phi (E_{\text{T}}^{\text{miss}}, p_{\text{T}}^{\text{miss}}) \) distribution of the signal region in and a control sample, defined by a selection of \(5 \text{ GeV} < p_{\text{T}}^{\text{miss}} < 20 \) GeV and no selection on \(\Delta \phi (E_{\text{T}}^{\text{miss}}, p_{\text{T}}^{\text{miss}}) \). The yields of the diboson processes, \(WZ, ZZ \) and \(WW \) production, are determined using simulation and are normalised to NLO predictions [1]. The uncertainties assigned to the NLO predictions are inflated to cover differences from the calculations in Refs. [52,53]. For \(WY \) production a K-factor is calculated from Ref. [54] and applied to the NLO prediction.

The observed data and the estimated signal and background yields are summarised in Table 1. Half of the events selected in data are estimated to originate from background processes, where top-quark production represents the largest contribution. The transverse momentum distribution of the selected jet after the final event selection is shown in Fig. 1(b), where data is shown to-
gather with the simulated \(WW \) signal events and the estimated background yields. Good agreement between the data and the estimated yields is observed for the selected \(WW + \) 1-jet candidate sample.

5. Cross-section measurement

The cross section for \(WW \) production in the \(e\mu \) final state with exactly one jet is measured. The definition of the fiducial phase space is derived from the selection applied to reconstructed events. Leptons are recombined with any final-state photons from QED radiation within a surrounding cone of size \(\Delta R = 0.1 \), to form so-called ‘dressed leptons’. Furthermore, electrons and muons are required to be oppositely charged and to originate directly from \(W \) decays. The same selection requirements on transverse momentum and pseudorapidity as at reconstruction level are applied to the dressed leptons. Stable particles with a lifetime \(\tau > 30 \) ps, excluding muons and neutrinos, are used to form particle-level jets using the anti-\(k_t \) algorithm with a radius parameter of \(R = 0.4 \). They are selected if \(p_T > 25 \) GeV and \(|\eta| < 4.5 \). To remove jets originating from electrons, jets which are a distance \(\Delta R < 0.3 \) from any electron from \(W \) decays selected as detailed above are ignored. The four-momentum sum of the neutrinos originating from the \(W \) boson decays is used for the calculation of both \(P_T^{\text{miss}} \) and \(E_{T,\text{Rel}} \) at generator level.

The number of selected \(WW \) candidate events with exactly one associated jet may receive contributions from events with different jet multiplicities due to the detector resolution. After subtracting the background contributions, \(N_{b,j} \), from the number of observed events, \(N_{\text{obs}} \), the observed signal yield, \(N_s = N_{\text{obs}} - N_{b} \), is corrected for detector inefficiencies, resolution and jet migration effects using a correction matrix \(R_{ij} \). The correction matrix also accounts for jets originating from pileup which increase the expected signal yield by 5%. It is evaluated using simulated \(WW \) event samples as the ratio of the number of events reconstructed in jet-bin \(i \) and generated in jet-bin \(j \), \(N_{\text{rec}}^{i,j}/N_{\text{gen}}^{i,j} \), to the number of events generated in the fiducial volume with \(j \) associated jets, \(N_{\text{fid}}^{j} \) :

\[
R_{ij} = \frac{N_{\text{rec}}^{i,j}}{N_{\text{gen}}^{i,j}}
\]

where all jet multiplicities \(j > 1 \) are contained in \(N_{\text{gen}}^{j} \) in the jet-bin corresponding to \(j = 1 \) to account for migrations into the event sample.

Electrons and muons from non-prompt \(\tau \)-lepton decays are accounted for in the numerator of Eq. (1) but not in the denominator, which effectively removes the contribution of \(W \rightarrow \tau\nu \) decays. This allows a definition of the fiducial region for prompt decays of \(W \) bosons into electrons and muons only. While the calculation of the total \(pp \rightarrow W^+W^- \) cross section at NNLO does not include \(b \)-quarks, such events can occur in the simulated event samples from gluon splitting, \(g \rightarrow bb \). The veto on identified \(b \)-jets affects these contributions in the calculation of the correction matrix \(R_{ij} \). The effect on the measured cross section is less than 1%. The values of the matrix \(R_{ij} \) are given in Table 2 together with their total uncertainties. Events reconstructed with the wrong jet multiplicity cause non-zero values for \(R_{ij} \) with \(i \neq j \).

The fiducial \(WW \) cross section in jet-bin \(j \) is given by the measured signal yields in jet-bins \(i = 0, 1 : \)

\[
\sigma_{WW}^{\text{fid,j}} = \frac{1}{L} \sum_{i=0}^{1} R_{ij} N_{i}^{j},
\]

where \(L \) is the integrated luminosity and \(N_{i}^{j} \) the background-subtracted events yield in jet bin \(i \). The cross sections for \(WW \) production with zero and one associated jet are extracted simultaneously using a profile likelihood fit [55,56] to data observed in 0-jet and 1-jet final states. Information from both the 0-jet final states from Ref. [14] and 1-jet final states are used, where systematic uncertainties are added to the likelihood function as nuisance parameters and treated as correlated between 0-jet and 1-jet final states.

The sum of the fiducial 0-jet and 1-jet cross sections is extrapolated to the total phase space by correcting for the acceptance \(A_{WW} \) and the branching fraction \(B \) of \(W \rightarrow \ell\nu \) decays:

\[
\sigma_{WW} = \sigma_{WW}^{\text{tot}} = \frac{\sigma_{WW}^{\text{0-jet}} + \sigma_{WW}^{\text{1-jet}}}{A_{WW} \cdot B^2}.
\]

Here, the acceptance \(A_{WW} \) is defined as the ratio of events generated in the \(\leq 1 \)-jet fiducial volume to all generated events. The acceptance correction factor is \(A_{WW} = 0.319 \), which is roughly 40% larger than for pure \(WW + 0 \)-jet final states [14]. The \(W \rightarrow \ell\nu \) efficiency, \(\epsilon = e, \mu \) or \(\tau \), branching fraction is \(B = 0.1083 \) [57].

6. Systematic uncertainties

Systematic uncertainties arising from the limited knowledge of the event reconstruction efficiency and the determination of the particle four-momenta are propagated to the measurement by varying the corresponding parameters in the calculation of the correction matrix \(R_{ij} \). Uncertainties in the efficiency of the trigger and the selection of the leptons result in an uncertainty of \(\pm 1.8\% \) in the fiducial cross section [58–62]. An uncertainty of \(\pm 2.9\% \) [49] is attributed to the identification and rejection of jets containing \(b \)-hadrons.

Uncertainties in the jet energy scale and the jet energy resolution affect the matrix elements \(R_{ij} \) especially for events with jets.
near the transverse momentum threshold of $p_T = 25$ GeV, resulting in uncertainties that can be as large as ±40% for R_{ij} with $i \neq j$. The effect on the $W W + 1$-jet cross section is found to be ±4.2% and ±1.0% from the jet energy scale and resolution [45,63], respectively. The uncertainty due to E_T^{miss} scale and resolution as well as p_T^{miss} scale and resolution account for ±0.4% in total [64]. The uncertainty from the modelling of additional pp interactions occurring in the same or nearby bunch crossings is less than ±0.6%. Uncertainties in the fiducial cross section due to the theoretical modelling of the correction matrix R_{ij} are evaluated using alternative simulated $q\bar{q} \rightarrow W^+ W^-$ event samples. The uncertainty due to the choice of generator and parton shower model is estimated by comparing simulated event samples generated with Powheg+Pythia 8 and with MC@NLO+Jimmy. The resulting uncertainty in the measured cross section is ±2.4%. The effect of higher-order corrections is estimated by varying the renormalisation and factorisation scales simultaneously by factors of 0.5 and 2 and comparing the resulting correction matrices. The associated uncertainty in the measured 1-jet cross section amounts to ±0.5%. The uncertainty due to the choice of PDF is calculated according to Ref. [65] and amounts to less than ±1.1%. Accounting for migrations from higher jet multiplicities introduces uncertainties of ±2.1%. The uncertainty in the correction matrix due to the relative normalisations of the different signal samples, $q\bar{q} \rightarrow W^+ W^-$, non-resonant gg and resonant $gg \rightarrow H$ production, is found to be negligible in comparison to other uncertainties.

The extrapolation from the fiducial to the total phase space introduces additional uncertainties. These are assessed separately for the $q\bar{q} \rightarrow W^+ W^-$, non-resonant $gg \rightarrow W^+ W^-$ and resonant $gg \rightarrow H \rightarrow W^+ W^-$ processes and amount to ±1.9% for the MC generator and parton shower uncertainty evaluated as described above. The PDF-induced uncertainty is estimated to be ±0.8%. The uncertainties due to potential contributions from higher-order effects are determined to be ±4.0% originating from the restriction to specific jet multiplicities. They are computed in the total phase space by considering the scale dependence of successive inclusive jet-binned cross sections to be uncorrelated [66]. The scale dependence of the remaining selection criteria is assessed without applying any jet requirements and is found to be ±0.2%.

7. Results

The cross section for $W W + 1$-jet production in the fiducial region is measured to be:

$$\sigma_{W W}^{\text{fid,1-jet}} = 136 \pm 6 \text{(stat)} \pm 14 \text{(syst)} \pm 3 \text{(lumi)} \text{ fb.}$$

(4)

The total relative uncertainty of the measured value is ±15% and correlated with the uncertainty of the fiducial $W W + 0$-jet cross section of $\sigma_{W W}^{\text{fid,0-jet}} = 374 \pm 7 \text{(stat)} \pm 23 \text{(syst)} \pm 8 \text{(lumi)} \text{ fb}$ presented in Ref. [14]. The correlation coefficient between the total uncertainties of the 0- and the 1-jet fiducial measurements is found to be $\rho = -0.051$. The measured cross sections and uncertainties can be used to compute a cross section defined in the fiducial $W W + \leq 1$-jet region:

$$\sigma_{W W}^{\text{fid,\leq1-jet}} = 511 \pm 9 \text{(stat)} \pm 26 \text{(syst)} \pm 10 \text{(lumi)} \text{ fb.}$$

(5)

Uncertainties causing migrations of events between jet bins are significantly reduced when comparing the fiducial $W W + 0$-jet cross section and the $W W + \leq 1$-jet cross section. The previously dominant experimental uncertainty in the jet energy scale is reduced by a factor of 2.5 by extending the measurement to include 1-jet final states.

Additional uncertainties introduced by the rejection of b-jets and increased uncertainties in the estimation of background contributions cause the overall experimental uncertainty to be lower by only 18%.

The ratio of jet-binned fiducial cross sections R_1 is measured to be:

$$R_1 = \sigma_{W W}^{\text{fid,1-jet}} / \sigma_{W W}^{\text{fid,0-jet}} = 0.36 \pm 0.05$$

(6)

and allows a test of theoretical calculations without knowing the total cross section.

Theoretical predictions of the fiducial cross sections are obtained by combining three separate theoretical calculations of the total cross sections with their respective acceptance correction factors $A_{W W}$. These factors are calculated using the simulated event samples generated at lower order in the perturbative expansion for the three separate processes contributing to $W W$ production.

The theoretical calculation of $pp \rightarrow W^+ W^-$ to order $O(\alpha_s^2)$ [2] is used, which formally includes the loop-induced gg contribution at order $O(\alpha_s^2)$. This gg contribution is subtracted and replaced by a calculation of the gg loop-process to order $O(\alpha_s^3)$ [3] instead. To this non-resonant $W W$ prediction, the prediction for resonant $W W^*$ production via a Higgs boson with a subsequent decay into two W bosons at order $O(\alpha_s^3)$ [67] is added to yield the total cross-section prediction of $(65.0^{+2.0}_{-1.0})$ pb, where the contributions from resonant and non-resonant $gg \rightarrow W^+ W^*$ production amount to 64.2% and 4.2% of the total cross section, respectively. Theoretical uncertainties in the acceptance are assigned as described in Section 6. The approximate theoretical fiducial cross sections are found to be:

$$\sigma_{W W}^{\text{fid,1-jet}} = 141 \pm 30 \text{ fb}$$

(7)

$$\sigma_{W W}^{\text{fid,\leq1-jet}} = 487 \pm 22 \text{ fb.}$$

(8)

A comparison of the measured and predicted fiducial cross sections is given in Fig. 2(a). While the fiducial $W W + 0$-jet cross section was measured slightly higher than the theoretical prediction, the fiducial $W W + 1$-jet and $W W + \leq 1$-jet cross-section measurements agree well with the theoretical prediction.

The ratio of the jet-binned fiducial cross sections R_1 measured in data is compared to several theoretical predictions in Fig. 2(b). All theoretical values agree well with the measurement within uncertainties. The first two theoretical predictions are taken from either the Powheg+Pythia 8 or the MC@NLO+Jimmy $q\bar{q} \rightarrow W^+ W^-$ samples. The theoretical uncertainty in these predictions is assessed by varying the renormalisation and factorisation scales independently by factors of 0.5 and 2 with the constraint $0.5 < \mu_F/\mu_R < 2$. The contributions from resonant and non-resonant $gg \rightarrow W^+ W^*$ production are taken in both cases from the respective Powheg+Pythia 8 and gg2WW samples, which increase the prediction for R_1 due to more initial-state radiation from gluons than quarks. The full effect of omitting the $gg \rightarrow W^+ W^*$ contributions is assigned as further theoretical uncertainty. To investigate resummation effects, a third prediction is obtained from the $q\bar{q} \rightarrow W^+ W^-$ and $gg \rightarrow W^+ W^-$ samples as discussed above, but with the Powheg+Pythia 8 $q\bar{q} \rightarrow W^+ W^-$ sample reweighted to reproduce the $p_T^{\text{W,W}}$ distribution as predicted by the NLO+NNLL calculation in Ref. [10]. In addition to renormalisation and factorisation scales, the resummation scale is varied here. Finally, predictions for R_1 are obtained by using recent fixed-order calculations.
for the $q\bar{q} \rightarrow W^+W^-$ and non-resonant $gg \rightarrow W^+W^-$ processes from MATRIX at NNLO [6] and MCFM at NLO, where the latter uses the implementations of inclusive W^W production [1] and W^W+1-jet production [8]. These programs allow the application of the fiducial lepton and missing transverse momentum selections avoiding the use of acceptance factors derived from lower-order programs. Jets are clustered from the final state partons using the anti-k_t algorithm with the radius parameter $R = 0.4$. A correction for non-perturbative effects from hadronisation and the underlying event is derived by comparing samples of MADGRAPH [68] using the CT10 PDF interfaced with PYTHIA 8 and the AU2 tune with these effects enabled or disabled. A systematic uncertainty is derived by interfacing the MADGRAPH samples with HERWIG++ [69] and the AUE2 tune. The renormalisation and factorisation scales for the MATRIX and MCFM predictions are set to $\mu_R = \mu_F = m_W$ and an uncertainty is obtained by varying these independently by factors of 0.5 and 2 with the constraint $0.5 < \mu_F/\mu_R < 2$. In both of these calculations, the non-resonant $gg \rightarrow W^+W^-$ production only contributes in the denominator of R_1. Contributions from resonant $gg \rightarrow H \rightarrow W^+W^-$ production are included using event samples simulated with POWHEG+PYTHIA 8.

The total WW cross section is extrapolated from the fiducial $W^W+\leq1$-jet cross section using Eq. (3) and found to be:

$$\sigma_{W^W}^{tot} = 68.2 \pm 1.2(\text{stat}) \pm 3.4(\text{syst}) \pm 2.8(\text{theo}) \pm 1.4(\text{lumi}) \text{ pb}. $$

The result presented here is 12% more precise than the previous ATLAS measurement based on W^W+0-jet candidate events only [14] due to smaller experimental uncertainties in the fiducial $W^W+\leq1$-jet cross-section measurement. The measured cross section is compatible with the theoretical prediction of $65.0^{+1.2}_{-1.1} \text{ pb}$.

8. Conclusion

The production of W boson pairs in association with a hadronic jet was studied in pp collisions at a centre-of-mass energy of $\sqrt{s} = 8 \text{ TeV}$ using data with an integrated luminosity of 20.3 fb^{-1} collected by the ATLAS detector at the LHC. The analysis extends a previous analysis to final states with one jet. The fiducial $WW+1$-jet cross section is measured to be $136 \pm 16 \text{ fb}$ within the fiducial volume defined by the kinematic requirements placed in the analysis. It is found to be in very good agreement with the theoretical prediction obtained by combining the total cross-section calculations of $q\bar{q} \rightarrow W^+W^-$ at $O(\alpha_s^2)$, non-resonant $gg \rightarrow W^+W^-$ at $O(\alpha_s^3)$, and resonant $gg \rightarrow W^+W^-$ at $O(\alpha_s^3)$ and multiplying them with their respective acceptance factor A_{WW}. Similarly, the measured fiducial $WW+\leq1$-jet cross section of $511 \pm 29 \text{ fb}$ agrees within the uncertainty with the prediction. The fiducial $WW+\leq1$-jet cross section is extrapolated to the total phase space, yielding a measurement of the total $pp \rightarrow W^+W^-$ cross section of $68.2 \pm 4.7 \text{ pb}$. This result is compared to the higher-order theory calculation available of $65.0 \pm 1.2 \text{ pb}$.

The total cross section extrapolated from the ≤1-jet fiducial volume is in better agreement with the theory calculation than the total cross section extrapolated from the 0-jet fiducial volume. The uncertainty is improved by 12%.

To investigate further how well current predictions are able to describe the relative contributions of these exclusive jet cross sections, the ratio of the fiducial $WW+1$-jet to the fiducial $WW+0$-jet cross section, R_1, is determined to be 0.36 ± 0.05 and compared to various theoretical predictions, which are all found to agree with the measurement within the uncertainties.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Cen-
ter, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSRT, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR, MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; HeraKleitos, Thales and Aristea programmes co-financed by EU-ESF and the Greek NSF; BSE, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [70].

References
ATLAS Collaboration

M. Abdou 136d, G. Aad 87, B. Abbott 114, J. Abdallah 8, O. Abdirnov 12, B. Abeoos 118, R. Aben 108
B.S. Acharya, 168a,168b,1a, S. Adachi 158, L. Adamczyk 40a, D.L. Adams 27, J. Adelman 109, S. Adomeit 101,
T. Adye 132, A.A. Affolder 76, T. Agatonovic-Jovin 14, J.A. Aguilar-Saavedra 127a,127f, S.P. Ahlen 84,
F. Ahmadov 67b, G. Aielli 134a,134b, H. Akerstedt 149a,149b, T.P.A. Akesson 83, A.V. Akimov 97,
G.L. Alberghini 22a,22b, J. Albert 173, S. Albrand 73, M.J. Alconada Verzini 73, M. Aleksa 32, I.N. Aleksandrov 67,
C. Alexe 28c, G. Alexander 136, T. Alexopoulos 10, M. Alhroob 114, B. Ali 129, M. Aliyev 75a,75b, G. Alimonti 93a,
J. Alison 33, S.P. Alkire 37, B.M.M. Allbrooke 152, B.W. Allen 105a,105b, A. Alonso 38, F. Alonzo 73, C. Alpigiani 139,
A.A. Alshehri 55, M. Alstady 85, B. Alvarez Gonzalez 32, D. Alvarez Piquer 171, M.G. Alviggi 105a,105b, B.T. Amadio 16,
M. Amanti 68, Y. Amaral Coutinho 26a, C. Amelung 25, D. Amidei 91, S.P. Amor Dos Santos 127a,127c, A. Amorim 127a,127b, S. Amoroso 32,
J.K. Anders 76, K.J. Anderson 34, A. Andrea 93a,93b, V. Andrei 60a, S. Angelidakis 9, I. Angelloz 108,
A. Angerami 37, F. Anghinolfi 32, A.V. Anisovik 110c, N. Anjos 13, A. Annoni 125a,125b, C. Antel 60a,
M. Antonelli 49, A. Antonov 99, F. Anuli 133a, M. Aoki 68, L. Aperio Belfa 19, G. Arabidze 92, Y. Ara 68,
J.P. Araque 127a, A.T.H. Arce 47, F.A. Arduh 73, J-F. Arguin 96, S. Argypouloos 65, M. Ari 20a,
A. Artamonov 98, G. Artmon 121, S. Artus 85, S. Asai 158, N. Ashahi 44, A. Ashkenazi 156, B. Asman 149a,149b,
L. Asquith 152, K. Assamagan 27, R. Astalos 147a, M. Atkinson 170, N.B. Atlay 144, K. Augsten 129, G. Avolio 32,
B. Axen 16, M.K. Ayoub 118, G. Azuelos 96d, M.A. Baak 32, A.E. Baas 60a, M.J. Baca 19, H. Bachacou 137,
K. Bachas 75a,75b, M. Backes 121, M. Bakhir 32, P. Bagiacchi 133a,133b, P. Bagnaia 133a,133b, Y. Bai 35a,
J.T. Baines 132, O.K. Baker 180, E.M. Baldin 110c, P. Balek 176, T. Balestier 151, F. Balli 137, W.K. Balunas 123,
E. Banas 41, Sw. Banerjee 177, A.A.E. Bannoura 179, L. Barak 32, E.L. Barberio 90, D. Barberis 52a,52b,
M. Barbero 37, T. Barillari 102, M-S. Baris 32, T. Barklow 146, N. Barlow 30, S.L. Barnes 36, B.M. Barnett 132,
R.M. Barnett 16, Z. Barnovska-Bleness 59, A. Baroncelli 135a, G. Barone 25, A.J. Bar 121,
L. Barranco Navarro 171, F. Barrie 84, J. Barreiro Guimarães da Costa 35a, R. Bartoldus 146, A.E. Barton 74,
P. Bartos 147a, A. Basalaev 124, A. Bassalat 118f, R.L. Bates 55, S.J. Batista 162, J.R. Batley 30, M. Battaglia 138,
M. Bauge 133a,133b, F. Bauer 137, H.S. Bawa 146g, J.B. Beacham 112, M.D. Beattie 74, T. Beaug 82,
P.H. Beauchemin 166, P. Bechtel 43, H.P. Beck 18h, K. Becker 121, M. Becker 85, M. Beckingham 174,
C. Becor 111, A.J. Beddall 20e, A. Beddall 168b, V.A. Bednyakov 67, M. Bedognetti 108, C.P. Bee 151,
L.J. Beemster 108, T.A. Beerrnann 32, M. Bege 27, J.K. Behr 44, C. Belanger-Champagne 89, A.S. Bell 80,
G. Bella 156, L. Bellagamba 22a, A. Bellerive 31, M. Bellomo 88, K. Belotsky 99, O. Beltramello 32,

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin, TX, United States
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Instituto de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, Universität Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston, MA, United States
25 Department of Physics, Brandeis University, Waltham, MA, United States
26 (a) Universidade Federal do Rio de Janeiro COPPE/EEF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of São João del Rei (UFSJ), São João del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
28 (a) Transilvania University of Brasov, Brasov; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa, ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
34 (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington, NY, United States
38 Niels Bohr Institute, University of Copenhagen, København, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
40 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
41 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
42 Physics Department, Southern Methodist University, Dallas, TX, United States
43 Physics Department, University of Texas at Dallas, Richardson, TX, United States
44 DESY, Hamburg and Zeuthen, Germany
45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, NC, United States
48 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
54 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
59 Department of Modern Physics, University of Science and Technology of China, Anhui, China
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, Indiana University, Bloomington, IN, United States
64 Institut für Astrophysik, Leopold-Franzens-Universität, Innsbruck, Austria
65 University of Iowa, Iowa City, IA, United States
66 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Also at Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States.

Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford, CA, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Flensburg University of Applied Sciences, Flensburg, Germany.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also affiliated with PKU-CHEP.

* Deceased.