Measurement of W^+W^- production in association with one jet in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

DOI
10.1016/j.physletb.2016.10.014

Publication date
2016

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Measurement of W^+W^- production in association with one jet in proton–proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

ARTICLE INFO

Article history:
Received 11 August 2016
Received in revised form 7 October 2016
Accepted 8 October 2016
Available online 14 October 2016
Editor: W.-D. Schlatter

ABSTRACT

The production of W boson pairs in association with one jet in pp collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta| < 4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma_{W^+W^-}^{\text{fid,1-jet}} = 136 \pm 6 \text{(stat)} \pm 14 \text{(syst)} \pm 3 \text{(lumi)} \text{ fb}$. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be $\sigma_{W^+W^-}^{\text{fid,0-1-jet}} = 511 \pm 9 \text{(stat)} \pm 26 \text{(syst)} \pm 10 \text{(lumi)} \text{ fb}$. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36 ± 0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The measurement of the production of two W bosons is a crucial test of the non-Abelian gauge structure of the electroweak theory of the Standard Model (SM). The increasing precision of the experimental measurements at the LHC has elicited improved theoretical descriptions of the process. Progress has been made to extend the next-to-leading-order (NLO) [1] calculation of $pp \to W^+W^-$ production to include next-to-next-to-leading-order (NNLO) effects [2] in perturbative quantum chromodynamics (QCD). A separate calculation of the loop-induced, non-resonant $gg \to W^+W^-$ production process has been made available at order $O(\alpha_s^3)$ [3] in the strong coupling constant α_s. Resonant WW production via the exchange of a Higgs boson has been calculated to order $O(\alpha_s^2)$ [4] and $O(\alpha_s^3)$ [5]. These predictions can be summed to give an updated prediction for the total cross section of $65.0^{+1.2}_{-1.1} \text{ pb}$ as further detailed in Section 7. In addition to these new calculations, fully differential NNLO predictions [6] have become available, as have dedicated NLO predictions for jet-associated WW production [7,8] with up to three jets [9]. The resummation of logarithms arising from a selection on the number of jets has been presented at next-to-next-to-leading-logarithm (NNLL) accuracy in Refs. [10,11]. It is therefore interesting to study WW production in association with jets to confront these calculations with experimental data from the LHC.

A measurement of the jet multiplicity in WW events at the CDF experiment was published in Ref. [12]. At the LHC, the CMS Collaboration has included WW production in association with one jet in their measurement of the total WW production cross section at $\sqrt{s} = 8$ TeV [13], but has not published dedicated fiducial cross sections of jet-associated WW production.

This letter presents a measurement of the fiducial cross section of WW production using the decay chain $W^+W^- \to e^\pm\nu_e\mu^\mp\nu_\mu$ in final states with one associated hadronic jet, further referred to as 1-jet final state. The fiducial region is defined using stable particles at the generator level and is chosen to match the experimental selection as closely as possible.

Only events with exactly one reconstructed jet are selected for the analysis, while events with a larger number of jets suffer from a large background from top-quark production and are not considered. The selected WW candidate event sample is corrected for background processes, detection efficiencies and resolution effects, and the cross section of $WW + 1$-jet production is extracted for the fiducial phase-space region. The results are combined with a previous measurement reported in Ref. [14] restricted to final.
states without any reconstructed jets, referred to as 0-jet final state. The fiducial $WW+1$-jet cross section and the ratio R_1 of the fiducial $WW+1$-jet and fiducial $WW+0$-jet cross sections are determined and compared to different theoretical predictions. The measurement therefore extends the fiducial phase space of the previous measurement of the WW production cross section.

2. Data and Monte Carlo samples

The ATLAS detector [15] is a general-purpose detector measuring collisions at the Large Hadron Collider (LHC) with coverage over the full azimuthal angle ϕ. It consists of an inner detector surrounded by a 2 T solenoid to measure tracks with pseudorapidities of $|\eta| < 2.5$, electromagnetic and hadronic calorimeters to provide energy measurements for $|\eta| < 4.9$, and a muon spectrometer with a toroidal magnetic field to detect muons with $|\eta| = 2.7$. A three-level trigger system selects events to be read out.

The measurement uses data collected with the ATLAS experiment during the 2012 data-taking period. Only runs with stable proton beams colliding at $\sqrt{s} = 8$ TeV are used in which all relevant detector components were functional. This data sample corresponds to an integrated luminosity of 20.3 fb$^{-1}$ determined with an uncertainty of $\pm 1.9\%$ and derived from beam-separation scans performed in November 2012 [16].

The analysis relies on event simulation to correct the measured event yields for experimental effects and for the study of background processes. Different simulated event samples are used to model the signal from the individual production mechanisms: $q\bar{q} \to W^+W^-$ events are simulated using the POWHEG 1.0 generator [17–21], which is interfaced to PYTHIA 8.170 [22]; for the non-resonant gg-induced WW signal the gG2ww program (version 3.1.3) [23] is employed and interfaced to HERWIG 6.5/JIMMY 4.31 [24,25]; resonant WW^* production via a Higgs boson with a mass of $m_H = 125$ GeV is modelled using POWHEG+PYTHIA 8.170. The three event samples are simulated using the CT10 NLO [26] parton distribution function (PDF). Photon radiation is modelled using PHOTOS [27]. The parameter tune used for the underlying event is AU2 [28]. The event samples are normalised to a cross section times branching ratio of 5.58 pb ($q\bar{q} \to W^+W^-$ [1]), 0.153 pb (non-resonant $gg \to W^+W^-$ [23]) and 0.435 pb ($gg \to H \to W^+W^-$ [4]). The sum of these contributions corresponds to a total WW cross-section of 58.7$^{+3.7}_{-4.9}$ pb where the uncertainties are due to scale and PDF uncertainties in the cross section calculations. For additional studies a sample of simulated $q\bar{q} \to W^+W^-$ events produced with MC@NLO [18] and JIMMY [24,25] using the AUET2 tune [29] and the CT10 PDF is used.

Production of pairs of top quarks, s-channel single top-quark production and W-associated top-quark production are modelled with the POWHEG+PYTHIA 6 generator with the AU2 [28] tune. Single top-quark production in the t-channel is described by the ACR 3.7 [30] MC generator interfaced to PYTHIA 6 [31] with the AUET2B tune [32]. These events samples are normalised to the respective NNLO+NLL calculations [33–36] to obtain the relative contribution to the total top-quark background, whose overall normalisation is determined from data as detailed in Section 4.

Background from W and Z boson production is modelled using ALPGEN 2.14 [37] interfaced to PYTHIA 6 and normalised to NNLO calculations [38] where needed. The AUET2 tune is used for the underlying event. The diboson background processes WZ and ZZ are generated using the same settings as employed for the simulated $q\bar{q} \to W^+W^-$ event samples. The production of a W boson and a virtual photon (γ^*) is generated using the SHERPA generator (version 1.4.2) [39]. For $W\gamma$ production ALPGEN+HERWIG+JIMMY is employed.

In all simulated event samples, additional pp collisions accompanying the hard-scatter interactions (pile-up) are modelled by overlaying minimum-bias events generated using PYTHIA 8. To simulate the detector response, the generated events are passed through a detailed simulation of the ATLAS detector [40] based on GEANT4 [41] or GEANT4 combined with a parameterised calorimeter simulation [42].

3. Object reconstruction and event selection

Events are selected using reconstructed jets, electrons, muons and missing transverse momentum. The selection follows closely the one in Ref. [14] to facilitate the combination with the $WW + 0$-jet final state. Electrons and muons are identified based on tracks in the inner detector matched either to energy deposits in the electromagnetic calorimeter or combined with tracks in the muon spectrometer, respectively. Electrons are reconstructed within $|\eta| < 2.47$ excluding the transition region between barrel and endcap calorimeters of $1.37 < |\eta| < 1.52$. Muons are required to lie within $|\eta| < 2.4$. The same reconstruction and identification requirements as in Ref. [14] are used, resulting in an event sample with minimal contributions from backgrounds due to particles misidentified as leptons, particularly from $W +$ jets, multijet and $W\gamma$ events. For the selection of WW candidate events, the presence of exactly two isolated, oppositely charged leptons ($\ell^+\ell^-$) with transverse momenta of $p_T^\ell > 25$ GeV and $p_T^\ell > 20$ GeV is required. Only final states with one electron and one muon are used. Events with additional leptons with $p_T > 7$ GeV are rejected, which helps to suppress other diboson processes with more than two leptons. It is required that at least one of the leptons has met an online single-lepton selection or both have passed a dilepton trigger with reduced thresholds and less stringent object identification criteria. This setup has an efficiency of 99%–100% with respect to the offline lepton selection.

Jets are formed using calibrated topological clusters of energy [43] reconstructed in the calorimeters using the anti-k_t algorithm [44] with radius parameter $R = 0.4$. Further corrections to the jet energy are applied based on simulation [45] and are followed by a pile-up suppression [46]. Jets are required to have $p_T > 25$ GeV and $|\eta| < 4.5$. More than 50% of the scalar sum of the p_T of all tracks contained within $\Delta R = 0.4$ of the jet axis is required to be from tracks associated with the primary vertex to suppress contributions from additional pp interactions in the event [47] if the jet satisfies $p_T < 50$ GeV and $|\eta| < 2.4$. Only events with exactly one jet meeting the above criteria are selected. Jets containing b-hadrons (so-called b-jets) are identified within the central region of the detector, $|\eta| < 2.5$, using a multivariate approach [48,49] with an efficiency of 85%. To reduce the background from top-quark production, events containing b-jets with $p_T > 20$ GeV and within $|\eta| < 2.5$ are rejected.

Selection requirements on the missing transverse momentum in the candidate events are used to reduce the contribution of events from $Z\gamma^* \to \tau\tau$ (Drell-Yan) production where both τ-leptons decay leptonically. Missing transverse momentum is reconstructed from the vector sum of the transverse momenta of identified particles [50] to which either reconstructed jets and calorimetric depo-
sitions not associated with any particle are added. Missing transverse momentum induced by mismeasurements of the energy of leptons is further reduced in the calorimeter-based measurement by projecting the missing transverse momentum E_T^{miss} onto nearby leptons, to calculate the so-called relative missing transverse momentum $E_T^{\text{miss}, \text{rel}}$. A lepton is considered nearby if the azimuthal separation to the E_T^{miss} direction is small, $\Delta \phi (E_T^{\text{miss}}, \ell) < \pi/2$, and only in this case, $E_T^{\text{miss}, \text{rel}}$ is modified to yield $E_T^{\text{miss}, \text{rel}} = E_T^{\text{miss}} \times \sin(\Delta \phi (E_T^{\text{miss}}, \ell))$, otherwise $E_T^{\text{miss}, \text{rel}} = E_T^{\text{miss}}$. The relative missing transverse momentum is required to be $E_T^{\text{miss}, \text{rel}} > 15$ GeV. An additional track-based measure of the missing transverse momentum (p_T^{miss}) is constructed by adding the momenta of tracks associated with the primary vertex to the vector sum of the transverse momenta of identified electrons and muons. By construction, p_T^{miss} is less sensitive to energy deposits from additional interactions and it is required to be $p_T^{\text{miss}} > 20$ GeV. To further reduce the sensitivity to fluctuations in either of the missing transverse momentum variables used, the azimuthal separation between E_T^{miss} and p_T^{miss} must satisfy $\Delta \phi (E_T^{\text{miss}}, p_T^{\text{miss}}) < 2.0$.

The invariant mass of the two selected leptons, $m_{\ell\ell}$, is required to be greater than 10 GeV to suppress contributions from misidentified leptons produced in multijet and $W +$ jets events. Apart from the requirements on the jets and $\Delta \phi (E_T^{\text{miss}}, p_T^{\text{miss}})$, this event selection is identical to the one employed in Ref. [14].

4. Determination of backgrounds

The experimental signature of exactly one electron and one muon with opposite electric charge, and missing transverse momentum can be produced by a variety of SM processes which are treated as backgrounds. Top quarks decay almost exclusively to a b-quark and a W boson. This makes $t\bar{t}$ and single top-quark production the dominant background to WW production, in particular for events with jets in the final state. The background yield from top-quark production is determined using a method proposed in Ref. [51]. The event yield is extrapolated from a control sample enriched in events from top-quark production. It is defined by the nominal selection requirements but must contain exactly one identified b-jet with $p_T > 25$ GeV and within $|\eta| < 2.5$, instead of requiring the absence of identified b-jets. The distribution of the transverse momentum of the b-jet in the control sample is shown in Fig. 1(a). The data is used to constrain the large experimental and theoretical uncertainties shown by the error bands. The factor to extrapolate from this control sample to the signal sample is determined as the ratio of jets passing or failing the b-tag requirement in additional control samples, defined by the presence of two jets, at least one of which passes the b-tag requirement. Systematic effects resulting from the choice of the control sample are corrected for by an additional factor estimated from simulated event samples. The correction introduces experimental systematic uncertainties of $\pm 3.1\%$, mainly from the uncertainty in the jet energy scale. Theoretical uncertainties are found to amount to $\pm 2.5\%$ and are dominated by differences in simulated $t\bar{t}$ event samples produced with POWHEG and MC@NLO, and uncertainties in the Wt production cross section. Statistical uncertainties from the limited size of the control samples in data and simulation introduce an uncertainty of $\pm 3.5\%$, resulting in an overall precision in the estimated top-quark background yield of $\pm 5.2\%$.

The estimation of the remaining background processes closely follows the methodology described in Ref. [14]. Data-driven estimates of the yields of $W +$ jets and multijet production are determined in an event sample in data that is selected with relaxed identification and isolation criteria for the leptons. The composition of this event sample with genuine and misidentified leptons can be inferred using the probabilities of genuine and misidentified leptons selected with the relaxed criteria to satisfy the nominal lepton selection criteria. The yield of background from Drell–Yan production is obtained from a simultaneous fit of the distribution of simulated event samples to the $\Delta \phi (E_T^{\text{miss}}, p_T^{\text{miss}})$ distribution of the data in the signal region and in a control sample, defined by a selection of $5 \text{ GeV} < p_T^{\text{miss}} < 20$ GeV and no selection on $\Delta \phi (E_T^{\text{miss}}, p_T^{\text{miss}})$. The yields of the diboson processes, WZ, ZZ and $W\gamma$ production, are determined using simulation and are normalised to NLO predictions [1]. The uncertainties assigned to the NLO predictions are inflated to cover differences from the calculations in Refs. [52,53]. For $W\gamma$ production a K-factor is calculated from Ref. [54] and applied to the NLO prediction.

The observed data and the estimated signal and background yields are summarised in Table 1. Half of the events selected in data are estimated to originate from background processes, where top-quark production represents the largest contribution. The transverse momentum distribution of the selected jet after the final event selection is shown in Fig. 1(b), where data is shown to-
The cross section measurement

The cross section for WW production in the $e\mu$ final state with exactly one jet is measured. The definition of the fiducial phase space is derived from the selection applied to reconstructed events. Leptons are recombined with any final-state photons from QED radiation within a surrounding cone of size $\Delta R = 0.1$, to form so-called ‘dressed leptons’. Furthermore, electrons and muons are required to be oppositely charged and to originate directly from W decays. The same selection requirements on transverse momentum and pseudorapidity as at reconstruction level are applied to the dressed leptons. Stable particles with a lifetime $\tau > 30$ ps, excluding muons and neutrinos, are used to form particle-level jets using the anti-k_t algorithm with a radius parameter of $R = 0.4$. They are selected if $p_T > 25$ GeV and $|\eta| < 4.5$. To remove jets originating from electrons, jets which are a distance $\Delta R < 0.3$ from any electron from W decays selected as detailed above are ignored. The four-momentum sum of the neutrinos originating from the W boson decays is used for the calculation of both p_T and \not{E}_T at generator level.

The number of selected WW candidate events with exactly one associated jet may receive contributions from events with different jet multiplicities due to the detector resolution. After subtracting the background contributions, N_{bkg}, from the number of observed events, N_{obs}, the observed signal yield, $N_s = N_{\text{obs}} - N_{\text{bkg}}$, is corrected for detector inefficiencies, resolution and jet migration effects using a correction matrix R_{ij}. The correction matrix also accounts for jets originating from pileup which increase the expected signal yield by 5%. It is evaluated using simulated WW event samples as the ratio of the number of events reconstructed in jet-bin i and generated in jet-bin j, $N_{\text{reco}}^{i,j}/N_{\text{gen}}^{i,j}$, to the number of events generated in the fiducial volume with j associated jets, N_{gen}^{j}:

$$R_{ij} = \frac{N_{\text{reco}}^{i,j}}{N_{\text{gen}}^{i,j}},$$

where all jet multiplicities $j > 1$ are contained in N_{gen}^{j} in the jet-bin corresponding to $j = 1$ to account for migrations into the event sample.
near the transverse momentum threshold of $p_T = 25$ GeV, resulting in uncertainties that can be as large as $\pm 40\%$ for R_{ij} with $i \neq j$. The effect on the $WW + 1$-jet cross section is found to be $\pm 4.2\%$ and $\pm 1.0\%$ from the jet energy scale and resolution [45,63], respectively. The uncertainty due to E_{T}^miss scale and resolution as well as p_T^miss scale and resolution account for $\pm 0.4\%$ in total [64]. The uncertainty from the modelling of additional pp interactions occurring in the same or nearby bunch crossings is less than $\pm 0.6\%$.

Uncertainties in the fiducial cross section due to the theoretical modelling of the correction matrix R_{ij} are evaluated using alternative simulated $q\bar{q} \rightarrow W^+W^-$ event samples. The uncertainty due to the choice of generator and parton shower model is estimated by comparing simulated event samples generated with POWHEG+PYTHIA 8 and with MC@NLO+JIMMY. The resulting uncertainty in the measured cross section is $\pm 2.4\%$. The effect of higher-order corrections is estimated by varying the renormalisation and factorisation scales simultaneously by factors of 0.5 and 2 and comparing the resulting correction matrices. The associated uncertainty in the measured 1-jet cross section amounts to $\pm 0.5\%$. The uncertainty due to the choice of PDF is calculated according to Ref. [65] and amounts to less than $\pm 0.1\%$. Accounting for migrations from higher jet multiplicities introduces uncertainties of $\pm 2.1\%$. The uncertainty in the correction matrix due the relative normalisations of the different signal samples, $q\bar{q} \rightarrow W^+W^-$, non-resonant gg and resonant $gg \rightarrow H$ production, is found to be negligible in comparison to other uncertainties.

The extrapolation from the fiducial to the total phase space introduces additional uncertainties. These are assessed separately for the $q\bar{q} \rightarrow W^+W^-$, non-resonant $gg \rightarrow W^+W^-$ and resonant $gg \rightarrow H \rightarrow W^+W^-$ processes and amount to $\pm 1.9\%$ for the MC generator and parton shower uncertainty evaluated as described above. The PDF-induced uncertainty is estimated to be $\pm 0.8\%$. The uncertainties due to potential contributions from higher-order effects are determined to be $\pm 4.0\%$ originating from the restriction to specific jet multiplicities. They are computed in the total phase space by considering the scale dependence of successive inclusive jet-binned cross sections to be uncorrelated [66]. The scale dependence of the remaining selection criteria is assessed without applying any jet requirements and is found to be $\pm 0.2\%$.

7. Results

The cross section for $WW + 1$-jet production in the fiducial region is measured to be:

$$\sigma_{WW} = 136 \pm 6 \text{ (stat)} \pm 14 \text{ (syst)} \pm 3 \text{ (lumi)} \text{ fb.}$$

The total relative uncertainty of the measured value is $\pm 15\%$ and correlated with the uncertainty of the fiducial $WW + 0$-jet cross section of $\sigma_{WW} = 374 \pm 7 \text{ (stat)} \pm 25 \text{ (syst)} \pm 8 \text{ (lumi)} \text{ fb}$ presented in Ref. [14]. The correlation coefficient between the total uncertainties of the 0- and the 1-jet fiducial measurements is found to be $\rho = -0.051$. The measured cross sections and uncertainties can be used to compute a cross section defined in the fiducial $WW + 1$-jet region:

$$\sigma_{WW} = 511 \pm 9 \text{ (stat)} \pm 26 \text{ (syst)} \pm 10 \text{ (lumi)} \text{ fb.}$$

Uncertainties causing migrations of events between jet bins are significantly reduced when comparing the fiducial $WW + 0$-jet cross section and the $WW + 1$-jet cross section. The previously dominant experimental uncertainty in the jet energy scale is reduced by a factor of 2.5 by extending the measurement to include 1-jet final states.

Additional uncertainties introduced by the rejection of b-jets and increased uncertainties in the estimation of background contributions cause the overall experimental uncertainty to be lower by only 18\%.

The ratio of jet-binned fiducial cross sections R_1 is measured to be:

$$R_1 = \frac{\sigma_{WW}^{\text{fid},1\text{-jet}}}{\sigma_{WW}^{\text{fid},0\text{-jet}}} = 0.36 \pm 0.05$$

and allows a test of theoretical calculations without knowing the total cross section.

Theoretical predictions of the fiducial cross sections are obtained by combining three separate theoretical calculations of the total cross sections with their respective acceptance correction factors A_{WW}. These factors are calculated using the simulated event samples generated at lower order in the perturbative expansion for the three separate processes contributing to WW production.

The theoretical calculation of $pp \rightarrow W^+W^-$ to order $O(\alpha_S^3)$ [2] is used, which formally includes the loop-induced gg contribution at order $O(\alpha_S^3)$. This gg contribution is subtracted and replaced by a calculation of the gg loop-process to order $O(\alpha_S^2)$ [3] instead. To this non-resonant WW prediction, the prediction for resonant WW^* production via a Higgs boson with a subsequent decay into two W bosons at order $O(\alpha_S)$ [67] is added to yield the total cross-section prediction of $65.0 \pm 1.2 \text{ pb}$, where the contributions from resonant and non-resonant $gg \rightarrow W^+W^-$ production amount to 6.4% and 4.2% of the total cross section, respectively. Theoretical uncertainties in the acceptance are assigned as described in Section 6. The approximate theoretical fiducial cross sections are found to be:

$$\sigma_{WW}^{\text{fid},1\text{-jet}} = 141 \pm 30 \text{ fb}$$

$$\sigma_{WW}^{\text{fid},1\text{-jet}} = 487 \pm 22 \text{ fb}$$

A comparison of the measured and predicted fiducial cross sections is given in Fig. 2(a). While the fiducial $WW + 0$-jet cross section was measured slightly higher than the theoretical prediction, the fiducial $WW + 1$-jet and $WW + \leq 1$-jet cross-section measurements agree well with the theoretical prediction.

The ratio of the jet-binned fiducial cross sections R_1 measured in data is compared to several theoretical predictions in Fig. 2(b). All theoretical values agree well with the measurement within uncertainties. The first two theoretical predictions are taken from either the POWHEG+PYTHIA 8 or the MC@NLO+JIMMY $q\bar{q} \rightarrow W^+W^-$ samples. The theoretical uncertainty in these predictions is assessed by varying the renormalisation and factorisation scales independently by factors of 0.5 and 2 with the constraint $0.5 < \mu_F/\mu_R < 2$. The contributions from resonant and non-resonant $gg \rightarrow W^+W^-$ production are taken in both cases from the respective POWHEG+PYTHIA 8 and gg2WW samples, which increase the prediction for R_1 due to more initial-state radiation from gluons than quarks. The full effect of omitting the $gg \rightarrow W^+W^-$ contributions is assessed as further theoretical uncertainty. To investigate resummation effects, a third prediction is obtained from the $q\bar{q} \rightarrow W^+W^-$ and $gg \rightarrow W^+W^-$ samples as discussed above, but with the POWHEG+PYTHIA 8 $q\bar{q} \rightarrow W^+W^-$ sample reweighted to reproduce the p_T distribution as predicted by the NLO+NNLL calculation in Ref. [10]. In addition to renormalisation and factorisation scales, the resummation scale is varied here. Finally, predictions for R_1 are obtained by using recent fixed-order calculations.

2 The prediction for the total cross section is slightly larger than the one cited in Ref. [14] due to the inclusion of the higher-order calculation of the loop-induced gg processes and the use of an alternative scale choice in the calculation of the $q\bar{q} \rightarrow W^+W^-$ process.
for the \(q\bar{q} \to W^+ W^- \) and non-resonant \(gg \to W^+ W^- \) processes from Matrix at NNLO [6] and MCFM at NLO, where the latter uses the implementations of inclusive \(W W \) production [1] and \(W W + 1\)-jet production [8]. These programs allow the application of the fiducial lepton and missing transverse momentum selections avoiding the use of acceptance factors derived from lower-order programs. Jets are clustered from the final state partons using the anti-\(k_T \) algorithm with the radius parameter \(R = 0.4 \). A correction for non-perturbative effects from hadronisation and the underlying event is derived by comparing samples of MadGraph [68] using the CT10 PDF interfaced with Pythia 8 and the AU2 tune with these effects enabled or disabled. A systematic uncertainty is derived by interfacing the MadGraph samples with Herwig++ [69] and the AUE2 tune. The renormalisation and factorisation scales for the Matrix and MCFM predictions are set to \(\mu_F = \mu_R = m_W \) and an uncertainty is obtained by varying these independently by factors of 0.5 and 2 with the constraint \(0.5 < \mu_F/\mu_R < 2 \). In both of these calculations, the non-resonant \(gg \to W^+ W^- \) production only contributes in the denominator of \(R_1 \). Contributions from resonant \(gg \to H \to W^+ W^- \) production are included using event samples simulated with Powheg+Pythia 8.

The total \(W W \) cross section is extrapolated from the fiducial \(W W + \leq 1\)-jet cross section using Eq. (3) and found to be:

\[
\sigma_{WW}^{\text{tot}} = 68.2 \pm 1.2(\text{stat}) \pm 3.4(\text{syst}) \pm 2.8(\text{theo}) \pm 1.4(\text{lumi}) \text{ pb}. \tag{9}
\]

The result presented here is 12% more precise than the previous ATLAS measurement based on \(W W + 0\)-jet candidate events only [14] due to smaller experimental uncertainties in the fiducial \(W W + \leq 1\)-jet cross-section measurement. The measured cross section is compatible with the theoretical prediction of 65.0^{+1.2}_{-1.1} \text{ fb}.

8. Conclusion

The production of \(W \) boson pairs in association with a hadronic jet was studied in \(pp \) collisions at a centre-of-mass energy of \(\sqrt{s} = 8 \text{ TeV} \) using data with an integrated luminosity of 20.3 \text{ fb}^{-1} collected by the ATLAS detector at the LHC. The analysis extends a previous analysis to final states with one jet. The fiducial \(WW + 1\)-jet cross section is measured to be 136\pm16 \text{ fb} within the fiducial volume defined by the kinematic requirements placed in the analysis. It is found to be in very good agreement with the theoretical prediction obtained by combining the total cross-section calculations of \(q\bar{q} \to W^+ W^- \) at \(O(\alpha_s^2) \), non-resonant \(gg \to W^+ W^- \) at \(O(\alpha_s^2) \), and resonant \(gg \to H \to W^+ W^- \) and multiplying them with their respective acceptance factor \(A_{WW} \). Similarly, the measured fiducial \(W W + \leq 1\)-jet cross section of 511 \pm 29 fb agrees within the uncertainty with the prediction. The fiducial \(W W + \leq 1\)-jet cross section is extrapolated to the total phase space, yielding a measurement of the total \(pp \to W^+ W^- \) cross section of 68.2 \pm 4.7 \text{ pb}. This result is compared to the highest-order theory calculation available of 65.0 \pm 1.2 \text{ pb}.

The total cross section extrapolated from the \(\leq 1\)-jet fiducial volume is in better agreement with the theory calculation than the total cross section extrapolated from the 0-jet fiducial volume. The uncertainty is improved by 12%.

To investigate further how well current predictions are able to describe the relative contributions of these exclusive jet cross sections, the ratio of the fiducial \(W W + 1\)-jet to the fiducial \(W W + 0\)-jet cross section, \(R_1 \), is determined to be 0.36 \pm 0.05 and compared to various theoretical predictions, which are all found to agree with the measurement within the uncertainties.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPERJ, Brazil; NSERC, NRC and CFI, Canada; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-Core and Benoziyo Cen-
The evolution of Monte Carlo event generators has been a central component of particle physics simulations, with a particularly strong emphasis on the ATLAS experiment at the Large Hadron Collider (LHC). The ATLAS Collaboration, collaborating with the CMS, ALICE, and LHCb experiments, has been at the forefront of the development of high-quality Monte Carlo event generators. These tools are essential for the analysis of data collected at the LHC, allowing physicists to study the properties of fundamental particles and their interactions with unprecedented accuracy. The collaboration of multiple institutions and the use of advanced computing resources have been crucial in enabling the complex calculations required for these simulations. The ATLAS Collaboration has made significant contributions to the field, including the development of new event generators and the refinement of existing ones, ensuring that the simulations accurately reflect the physics processes being studied. This foundational work continues to be a cornerstone of particle physics research, allowing for a deeper understanding of the fundamental laws governing the universe. The ATLAS Collaboration has been pivotal in advancing the field, with contributions to the ATLAS event generator, reliable in assembling the event generator, demonstrating their expertise in computational science and their commitment to advancing particle physics research.
ATLAS Collaboration

M. Aaboud136d, G. Aad87, B. Abbott114, J. Abdallah8, O. Abdinov12, B. Abeoos118, R. Aben108

O.S. AbouZeid138, N.L. Abraham152, H. Abramowicz156, H. Abreu155, R. Abreu117, Y. Abulaiti149a,149b, B.S. Acharya168a,168b, S. Adachi158, L. Adamczyk40a, D.L. Adams27, J. Adelman109, S. Adomeit101, T. Adye132, A.A. Affolder76, T. Agatonovic-Jovin14, J.A. Aguilar-Saavedra127a,127f, S.P. Ahlen44, F. Ahmadov67b, G. Alieti134a,134b, H. Akerstedt149a,149b, T.P.A. Akesson83, A.V. Akinov97, G.L. Alberghi22a,22b, J. Albert173, S. Albrand70, M.J. Alconada Verzini73, M. Aleksa32, I.N. Aleksandrov67

C. Alexa28b, G. Alexander136, T. Alexopoulos10, M. Althoff141, B. Ali129, M. Ali75a,75b, G. Alimonti93a, J. Alison33, S.P. Alkire37, B.M.M. Allbrooke152, B.W. Allen105a,105b, A. Alonso38, F. Alonso73, C. Alpigiani134b, A.A. Alshcheri55, M. Alstott87, B. Alvarez Gonzalez32, D. Alvarez Piquer17a, M.G. Alviggi105a,105b, B.T. Amadio16, K. Amako68, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei91, S.P. Amor Dos Santos127a,127c, A. Amorim127a,127f, S. Amoroso32, G. Amundsen25, C. Anastopoulos142, L.S. Ancu31, N. Andari19, T. Andeen11, C.F. Anders60a, G. Anders32, J.K. Anders76, K.J. Anderson33, A. Andrea93a,93b, V. Andrei60a, S. Angelidakis8, I. Angelozzi108, A. Angerami37, F. Anghinolfi32, A.V. Anisenton110,c, N. Anjos13, A. Annov125a,125b, C. Antel60a, M. Antonelli49, A. Antonov99,*, F. Anulli133a, M. Aoki68, L. Aperio Bella19, G. Arabidze92, Y. Ara68, J.P. Araque127a, A.T.H. Arce47, F.A. Arduh73, J-F. Arguin96, S. Argyropoulos65, M. Arik20a, A.J. Armbruster146, L.J. Armitage78, O. Arnaz32, H. Arnold50, M. Arratia30, O. Arslan23, A. Artamonov98, G. Artoni121, S. Artzt85, S. Asai158, N. Asbahi44, A. Ashkenazi156, B. Asman149a,149b, L. Asquith152, K. Assamagan27, R. Astalos147a, M. Atkinson170, N.B. Atlay144, K. Augsten129, G. Avolio32, B. Axen16, M.K. Ayoub118, G. Azuelos96,d, M.A. Baak32, A.E. Baas60a, M.J. Baca19, H. Bachach137, K. Bachas75a,75b, M. Backhaus32, P. Bagiacchi133a,133b, P. Bagnaia133a,133b, Y. Bai35a, J.T. Baines132, O.K. Baker180, E.M. Baldwin110,c, P. Balek176, T. Balest151, F. Bali37, W.K. Balunas123, E. Banas41, Sw. Banerjee77,e, A.A.E. Bannoura179, L. Bark32, E.L. Barberio90, D. Barberis52a,52b, M. Barbero47, T. Barill102, M-S Baris32, T. Barklow146, N. Barlow36, S.L. Barnes86, B.M. Barnett132, R.M. Barnett16, Z. Barnovska-Blenessy59, A. Baroncelli135a, G. Barone25, A.J. Bari121, L. Barranco Navarro172, F. Barriero44, J. Barreiro Guimarães134a,134b, G. Barriero134a,134b, K. Barrie134a,134b, H.S. Bawa146,g, J.B. Beacham112, M.D. Bethie74, T. Beat82, P.H. Beauchemin166, P. Beck63, H.P. Beck18,l, K. Becker121, M. Becker85, M. Beckingham174, C. Becor111, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov67, M. Bedognetti108, C.P. Bee151, L.J. Beemster108, T.A. Beermann32, M. Bege27, J.K. Behr44, C. Belanger-Champagne89, A.S. Bell80, G. Bella156, L. Bellagamba22a, A. Bellerive31, M. Bellomo88, K. Belotskij99, O. Beltrame32,

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin, TX, United States
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Instituto de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahçeşehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, Universit of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston, MA, United States
25 Department of Physics, Brandeis University, Waltham, MA, United States
26 (a) Universidad Federal do Rio De Janeiro COPPE/EIE, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UNIFJ), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJF), Sao Joao del Rei; (d) Instituto de Fisica, Universidad de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
28 (a) Transilvania University of Brasov, Brasov; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa, ON, Canada
32 CERN, Geneva, Switzerland
33 Erice Fermi Institute, University of Chicago, Chicago, IL, United States
34 (a) Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago; (b) Departamento di Fisica, Università della Calabria, Rende, Italy
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington, NY, United States
38 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
40 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
41 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
42 Physics Department, Southern Methodist University, Dallas, TX, United States
43 Physics Department, University of Texas at Dallas, Richardson, TX, United States
44 DESY, Hamburg and Zeuthen, Germany
45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, NC, United States
48 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
55 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
59 Department of Modern Physics, University of Science and Technology of China, Anhui, China
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, Indiana University, Bloomington, IN, United States
64 Institut für Astroz- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
65 University of Iowa, Iowa City, IA, United States
66 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Physics Department, Royal Institute of Technology, Stockholm, Sweden

Deparament of Physics, Stockholm University, Stockholm, Sweden

Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Waseda Department

Deparament of Physics, Ochanomizu University, Tokyo, Japan

Tomsk State University, Tomsk, Russia

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at HSE University, Moscow, Russia.

Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States.

Also at Physics Department, An-Najah National University, Nablus, Palestine.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.

Also at Tomsk State University, Tomsk, Russia.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Department of Physics, National Tsing Hua University, Taiwan.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.

Also at CERN, Geneva, Switzerland.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

Also at Manhattan College, New York, NY, United States.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at School of Physics, Shandong University, Shandong, China.

Also at Academia Sinica, Taipei, Taiwan.

Also at School of Physics, Shandong University, Shandong, China.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Eotvos Lorand University, Budapest, Hungary.
Also at Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States.

Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford, CA, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Flensburg University of Applied Sciences, Flensburg, Germany.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also affiliated with PKU-CHEP.

* Deceased.